Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 339-352.

ON BASES OF g-INVARIANT ENDOMORPHISM ALGEBRAS

Jing-Song Huang and Yufeng Zhao

Mathematics Research Center, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
e-mail: huangjingsong@cuhk.edu.cn

Department of Mathematics, Peking University, Beijing, China
e-mail: Zhaoyufeng@math.pku.edu.cn


Abstract.   Let g be a complex simple Lie algebra. Let Z(g) be the center of the universal enveloping algebra U(g). Let Vλ be the finite-dimensional irreducible g-module with highest weight λ. Our main result is a criterion of the existence of Z(g)-bases for the g-invariant endomorphism algebra Rλ=: Homg(End Vλ,U(g)). Then we obtain a Clifford algebra analogue, namely a criterion of the existence C(g)g-bases for RλC =: Homg(End Vλ,C(g)). We also describe a criterion of the existence of bases generated by powers of the Casimir element for R{λ,ν} =: Homg(End Vλ, End Vν).

2020 Mathematics Subject Classification.   22E47, 22E46.

Key words and phrases.   Simple Lie algebra, Casimir operator, invariant endomorphism algebra.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/y6zolb4v6m


References:

  1. B. C. Hall, Lie Groups, Lie Algebras and Representations, 2nd edition, Graduate Texts in Mathematics 222, Springer, Cham, 2015.
    MathSciNet     CrossRef

  2. R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Bar-Ilan University, Ramat Gan, 1995, pp. 1-182.
    MathSciNet

  3. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics 9, Springer-Verlag, New York-Berlin, 1972.
    MathSciNet

  4. A. A. Kirillov, Family algebras, Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 7-20.
    MathSciNet     CrossRef

  5. A. A. Kirillov, Introduction to family algebras, Mosc. Math. J. 1 (2001), 49-63.
    MathSciNet     CrossRef

  6. B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404.
    MathSciNet     CrossRef

  7. B. Kostant, On the tensor product of a finite and an infinite dimensional representation, J. Functional Analysis 20 (1975), 257-285.
    MathSciNet     CrossRef

  8. B. Kostant, Clifford algebra analogue of the Hopf - Koszul - Samelson Theorem, the ρ-decomposition C(g) = End Vρ ⊗ C(P), and the g-Module Structure of ∧g, Adv. Math. 125 (1997), 275-350.
    MathSciNet     CrossRef

  9. S. Okubo and H. C. Myung, Adjoint operators in Lie algebras and the classification of simple flexible Lie-admissible algebras, Trans. Amer. Math. Soc. 264 (1981), 459-472.
    MathSciNet     CrossRef

  10. D. Panyushev, Weight multiplicity free representations, g-endomorphism algebras, and Dynkin polynomials, J. London. Math. Soc. (2) 69 (2004), 273-290.
    MathSciNet     CrossRef

  11. N. Rozhkovskaya, Commutativity of quantum family algebras, Lett. Math. Phys. 63 (2003), 87-103.
    MathSciNet     CrossRef


Rad HAZU Home Page