Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 339-352.
ON BASES OF g-INVARIANT ENDOMORPHISM ALGEBRAS
Jing-Song Huang and Yufeng Zhao
Mathematics Research Center, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
e-mail: huangjingsong@cuhk.edu.cn
Department of Mathematics, Peking University, Beijing, China
e-mail: Zhaoyufeng@math.pku.edu.cn
Abstract. Let g be a complex simple Lie algebra.
Let Z(g) be the center of the universal enveloping algebra U(g).
Let Vλ be the finite-dimensional irreducible g-module with highest weight λ.
Our main result is a criterion of the existence of Z(g)-bases for the g-invariant endomorphism algebra
Rλ=: Homg(End Vλ,U(g)).
Then we obtain a Clifford algebra analogue, namely a criterion of the existence C(g)g-bases for
RλC =: Homg(End Vλ,C(g)).
We also describe a criterion
of the existence of bases generated by powers of the Casimir element for R{λ,ν} =:
Homg(End Vλ, End Vν).
2020 Mathematics Subject Classification.
22E47, 22E46.
Key words and phrases. Simple Lie algebra, Casimir operator, invariant endomorphism algebra.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y6zolb4v6m
References:
- B. C. Hall, Lie Groups, Lie Algebras and Representations, 2nd edition, Graduate Texts
in Mathematics 222, Springer, Cham, 2015.
MathSciNet
CrossRef
- R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and
beyond, The Schur lectures (1992) (Tel Aviv), Bar-Ilan University, Ramat Gan, 1995, pp. 1-182.
MathSciNet
- J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate
Texts in Mathematics 9, Springer-Verlag, New York-Berlin, 1972.
MathSciNet
- A. A. Kirillov, Family algebras, Electron. Res. Announc. Amer. Math. Soc. 6 (2000),
7-20.
MathSciNet
CrossRef
- A. A. Kirillov, Introduction to family algebras, Mosc. Math. J. 1 (2001), 49-63.
MathSciNet
CrossRef
- B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963),
327-404.
MathSciNet
CrossRef
- B. Kostant, On the tensor product of a finite and an infinite dimensional representation,
J. Functional Analysis 20 (1975), 257-285.
MathSciNet
CrossRef
- B. Kostant, Clifford algebra analogue of the Hopf - Koszul - Samelson Theorem, the
ρ-decomposition C(g) = End Vρ ⊗ C(P), and the g-Module Structure of ∧g, Adv. Math.
125 (1997), 275-350.
MathSciNet
CrossRef
- S. Okubo and H. C. Myung, Adjoint operators in Lie algebras and the classification of
simple flexible Lie-admissible algebras, Trans. Amer. Math. Soc. 264 (1981), 459-472.
MathSciNet
CrossRef
- D. Panyushev, Weight multiplicity free representations, g-endomorphism algebras, and
Dynkin polynomials, J. London. Math. Soc. (2) 69 (2004), 273-290.
MathSciNet
CrossRef
- N. Rozhkovskaya, Commutativity of quantum family algebras, Lett. Math. Phys. 63
(2003), 87-103.
MathSciNet
CrossRef
Rad HAZU Home Page