Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 327-337.

SHARPENING THE DIRAC INEQUALITY

Pavle Pandžić and Ana Prlić

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: pandzic@math.hr
e-mail: anaprlic@math.hr


Abstract.   We explain an idea towards a possible proof of a conjecture of Salamanca-Riba and Vogan. This conjecture, also called the Convex hull conjecture, sharpens the well known Dirac inequality of Partahasarathy, which has been useful in several partial classifications of unitary representations of real reductive groups. The idea we present originates from collaboration with David Renard.

2020 Mathematics Subject Classification.   22E47.

Key words and phrases.   Real reductive group, representation, Harish-Chandra module, Dirac operator, Dirac inequality.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yq32oh8v89


References:

  1. J. Adams, M. van Leeuwen, P. Trapa and D. Vogan, Unitary representations of real reductive groups, Astérisque 417 (2020), 174 pp.
    MathSciNet     CrossRef

  2. T. Enright, R. Howe and N. Wallach, A classification of unitary highest weight modules, in: Representation theory of reductive groups (Park City, Utah, 1982), Birkhäuser, Boston, 1983, 97-143.
    MathSciNet

  3. J.-S. Huang and P. Pandžić, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.
    MathSciNet     CrossRef

  4. J.-S. Huang and P. Pandžić, Dirac Operators in Representation Theory, Math. Theory Appl., Birkhäuser, Boston, 2006.
    MathSciNet

  5. D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/

  6. H. P. Jakobsen, Hermitian symmetric spaces and their unitary highest weight modules, J. Funct. Anal. 52 (1983), 385-412.
    MathSciNet     CrossRef

  7. P. Pandžić, Dirac operators and unitarizability of Harish-Chandra modules, Math. Commun. 15 (2010), 273-279.
    MathSciNet

  8. P. Pandžić, A. Prlić, G. Savin, V. Souček and V. Tuček, On the classification of unitary highest weight modules in the exceptional cases, in preparation.

  9. P. Pandžić, A. Prlić, V. Souček and V. Tuček, Dirac inequality for highest weight Harish-Chandra modules I, Math. Inequalities Appl. 26 (2023), 233-265.
    MathSciNet     CrossRef

  10. P. Pandžić, A. Prlić, V. Souček and V. Tuček, Dirac inequality for highest weight Harish-Chandra modules II, Math. Inequalities Appl. 26 (2023), 729-760.
    MathSciNet     CrossRef

  11. P. Pandžić, A. Prlić, V. Souček and V. Tuček, On the classification of unitary highest weight modules, arXiv:2305.15892.

  12. R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. (2) 96 (1972), 1-30.
    MathSciNet     CrossRef

  13. R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. Sect. A Math. Sci. 89 (1980), 1-24.
    MathSciNet

  14. S. A. Salamanca-Riba and D. A. Vogan, Jr., On the classification of unitary representations of reductive Lie groups, Ann. of Math. (2) 148 (1998), 1067-1133.
    MathSciNet     CrossRef

  15. D. A. Vogan, Jr., Dirac operators and unitary representations, 3 talks at MIT Lie groups seminar, Fall 1997.

  16. D. A. Vogan, Jr. and G. J. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), 51-90.
    MathSciNet

  17. K. D. Wong, On the unitary dual of U(p, q): proof of a conjecture of Salamanca-Riba and Vogan, arxiv:2210.08684.


Rad HAZU Home Page