Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 283-325.

ON REDUCIBILITY OF REPRESENTATIONS INDUCED FROM THE ESSENTIALLY SPEH REPRESENTATIONS AND DISCRETE SERIES

Ivan Matić

School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, 31 000 Osijek, Croatia
e-mail: imatic@mathos.hr


Abstract.   Let π stand for an essentially Speh representation of the form L(δ([νa ρ, νa+k ρ]), ..., δ([νa+n-1 ρ, νa+k+n-1} ρ])), where ρ is an irreducible cuspidal representation of the general linear group over a non-archimedean local field or its separable quadratic extension, a ≤ 0, 2a + k > 0, and n ≥ 1. Let σ denote a discrete series representation of either symplectic, special odd-orthogonal, or unitary group. We determine when the induced representation π ⋊ σ reduces.

2020 Mathematics Subject Classification.   22E35, 22E50, 11F70.

Key words and phrases.   Classical p-adic groups, essentially Speh representations, discrete series.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ypn4oc4q59


References:

  1. J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, American Mathematical Society, Providence, RI, 2013.
    MathSciNet     CrossRef

  2. H. Atobe, On the socles of certain parabolically induced representations of p-adic classical groups, Represent. Theory 26 (2022), 515-541.
    MathSciNet     CrossRef

  3. B. Bošnjak, Representations induced from cuspidal and ladder representations of classical p-adic groups, Proc. Amer. Math. Soc. 149 (2021), 5081-5091.
    MathSciNet     CrossRef

  4. W. T. Gan and L. Lomeli, Globalization of supercuspidal representations over function fields and applications, J. Eur. Math. Soc. (JEMS) 20 (2018), 2813-2858.
    MathSciNet     CrossRef

  5. C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math. 119 (1997), 1213-1262.
    MathSciNet

  6. Y. Kim and I. Matić, Discrete series of odd general spin groups, Monatsh. Math., to appear.
    CrossRef

  7. A. Kret and E. Lapid, Jacquet modules of ladder representations, C. R. Math. Acad. Sci. Paris 350 (2012), 937-940.
    MathSciNet     CrossRef

  8. E. Lapid and M. Tadić, Some results on reducibility of parabolic induction for classical groups, Amer. J. Math. 142 (2020), 505-546.
    MathSciNet     CrossRef

  9. I. Matić, On discrete series subrepresentations of the generalized principal series, Glas. Mat. Ser. III 51 (2016), 125-152.
    MathSciNet     CrossRef

  10. I. Matić, Reducibility of representations induced from the Zelevinsky segment and discrete series, Manuscripta Math. 164 (2021), 349-374.
    MathSciNet     CrossRef

  11. I. Matić, Representations induced from the Zelevinsky segment and discrete series in the half-integral case, Forum Math. 164 (2021), 193-212.
    MathSciNet     CrossRef

  12. I. Matić, Irreducibility criteria for the generalized principal series of unitary groups, Proc. Amer. Math. Soc. 150 (2022), 5009-5021.
    MathSciNet     CrossRef

  13. I. Matić, On representations induced from the Zelevinsky segment and a tempered representation in the half-integral case, J. Algebra Appl. 22 (2023), no. 11, Paper No. 2350238, 41 pp.
    MathSciNet     CrossRef

  14. C. Mœglin, Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité, J. Eur. Math. Soc. (JEMS) 4 (2002), 143-200.
    MathSciNet     CrossRef

  15. C. Mœglin, Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, in: Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Amer. Math. Soc., Providence, RI, 2014, 295-336.
    MathSciNet     CrossRef

  16. C. Mœglin and M. Tadić, Construction of discrete series for classical p-adic groups, J. Amer. Math. Soc. 15 (2002), 715-786.
    MathSciNet     CrossRef

  17. G. Muić, Composition series of generalized principal series; the case of strongly positive discrete series, Israel J. Math. 140 (2004), 157-202.
    MathSciNet     CrossRef

  18. G. Muić, Reducibility of generalized principal series, Canad. J. Math. 57 (2005), 616-647.
    MathSciNet     CrossRef

  19. G. Muić, Reducibility of standard representations, Pacific J. Math. 222 (2005), 133-168.
    MathSciNet     CrossRef

  20. M. Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), 335-382.
    MathSciNet

  21. M. Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra 177 (1995), 1-33.
    MathSciNet     CrossRef

  22. M. Tadić, On tempered and square integrable representations of classical p-adic groups, Sci. China Math. 56 (2013), 2273-2313.
    MathSciNet     CrossRef

  23. A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1989), 165-210.
    MathSciNet


Rad HAZU Home Page