Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 283-325.
ON REDUCIBILITY OF REPRESENTATIONS INDUCED FROM THE ESSENTIALLY SPEH REPRESENTATIONS AND DISCRETE SERIES
Ivan Matić
School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, 31 000 Osijek, Croatia
e-mail: imatic@mathos.hr
Abstract. Let π stand for an essentially Speh representation of the form
L(δ([νa ρ, νa+k ρ]), ...,
δ([νa+n-1 ρ, νa+k+n-1} ρ])),
where ρ is an irreducible cuspidal representation of the general linear group over a non-archimedean local field
or its separable quadratic extension, a ≤ 0, 2a + k > 0, and n ≥ 1.
Let σ denote a discrete series representation of either symplectic, special odd-orthogonal, or unitary group.
We determine when the induced representation π ⋊ σ reduces.
2020 Mathematics Subject Classification.
22E35, 22E50, 11F70.
Key words and phrases. Classical p-adic groups, essentially Speh representations, discrete series.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ypn4oc4q59
References:
- J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic
groups, American Mathematical Society, Providence, RI, 2013.
MathSciNet
CrossRef
- H. Atobe, On the socles of certain parabolically induced representations of p-adic classical
groups, Represent. Theory 26 (2022), 515-541.
MathSciNet
CrossRef
- B. Bošnjak, Representations induced from cuspidal and ladder representations of classical
p-adic groups, Proc. Amer. Math. Soc. 149 (2021), 5081-5091.
MathSciNet
CrossRef
- W. T. Gan and L. Lomeli, Globalization of supercuspidal representations over function
fields and applications, J. Eur. Math. Soc. (JEMS) 20 (2018), 2813-2858.
MathSciNet
CrossRef
- C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal
groups, Amer. J. Math. 119 (1997), 1213-1262.
MathSciNet
- Y. Kim and I. Matić, Discrete series of odd general spin groups, Monatsh. Math., to
appear.
CrossRef
- A. Kret and E. Lapid, Jacquet modules of ladder representations,
C. R. Math. Acad. Sci. Paris 350 (2012), 937-940.
MathSciNet
CrossRef
- E. Lapid and M. Tadić, Some results on reducibility of parabolic induction for classical
groups, Amer. J. Math. 142 (2020), 505-546.
MathSciNet
CrossRef
- I. Matić, On discrete series subrepresentations of the generalized principal series,
Glas. Mat. Ser. III 51 (2016), 125-152.
MathSciNet
CrossRef
- I. Matić, Reducibility of representations induced from the Zelevinsky segment and discrete
series, Manuscripta Math. 164 (2021), 349-374.
MathSciNet
CrossRef
- I. Matić, Representations induced from the Zelevinsky segment and discrete series in
the half-integral case, Forum Math. 164 (2021), 193-212.
MathSciNet
CrossRef
- I. Matić, Irreducibility criteria for the generalized principal series of unitary groups,
Proc. Amer. Math. Soc. 150 (2022), 5009-5021.
MathSciNet
CrossRef
- I. Matić, On representations induced from the Zelevinsky segment and a tempered
representation in the half-integral case, J. Algebra Appl. 22 (2023), no. 11, Paper No. 2350238, 41 pp.
MathSciNet
CrossRef
- C. Mœglin, Sur la classification des séries discrètes des groupes classiques p-adiques:
paramètres de Langlands et exhaustivité, J. Eur. Math. Soc. (JEMS) 4 (2002), 143-200.
MathSciNet
CrossRef
- C. Mœglin, Paquets stables des séries discrètes accessibles par endoscopie tordue; leur
paramètre de Langlands, in: Automorphic forms and related geometry: assessing the
legacy of I. I. Piatetski-Shapiro, Amer. Math. Soc., Providence, RI, 2014, 295-336.
MathSciNet
CrossRef
- C. Mœglin and M. Tadić, Construction of discrete series for classical p-adic groups,
J. Amer. Math. Soc. 15 (2002), 715-786.
MathSciNet
CrossRef
- G. Muić, Composition series of generalized principal series; the case of strongly positive
discrete series, Israel J. Math. 140 (2004), 157-202.
MathSciNet
CrossRef
- G. Muić, Reducibility of generalized principal series, Canad. J. Math. 57 (2005), 616-647.
MathSciNet
CrossRef
- G. Muić, Reducibility of standard representations, Pacific J. Math. 222 (2005), 133-168.
MathSciNet
CrossRef
- M. Tadić, Classification of unitary representations in irreducible representations of
general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19
(1986), 335-382.
MathSciNet
- M. Tadić, Structure arising from induction and Jacquet modules of representations of
classical p-adic groups, J. Algebra 177 (1995), 1-33.
MathSciNet
CrossRef
- M. Tadić, On tempered and square integrable representations of classical p-adic groups,
Sci. China Math. 56 (2013), 2273-2313.
MathSciNet
CrossRef
- A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible
representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1989), 165-210.
MathSciNet
Rad HAZU Home Page