Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 259-281.

LOGARITHMIC VERTEX ALGEBRAS RELATED TO sp(4)

Dražen Adamović and Antun Milas

Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: adamovic@math.hr

Department of Mathematics and Statistics, SUNY-Albany, Albany NY 12222, USA
e-mail: amilas@albany.edu


Abstract.   We present several results and conjectures pertaining to parafermion vertex algebra and related logarithmic vertex algebras. Starting from the tensor product of two copies of the singlet vertex algebra M(2), we consider various subalgebras that appear in its decomposition including N-1(sl(2)) and its Z2-fixed point algebra, and the S2-symmetric orbifold of the singlet vertex algebra M(2). In particular, we show that N-1(sl(2)) has an extension to a W-algebra of type (2, 3, 4, 5, 6, 7, 8). Finally we state some conjectures about singlet and triplet type W-algebras of type sp(4) and their characters.

2020 Mathematics Subject Classification.   17B69, 17B20, 17B67.

Key words and phrases.   Vertex algebra, parafermion algebra.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/94kl4c1j8m


References:

  1. T. Abe, A Z2-orbifold model of the symplectic fermionic vertex operator superalgebra, Math. Z. 255 (2007), 755-792
    MathSciNet     CrossRef

  2. D. Adamović, Classification of irreducible modules of certain subalgebras of free boson vertex algebra, J. Algebra 270 (2003), 115-132
    MathSciNet     CrossRef

  3. D. Adamović, A realization of certain modules for the N = 4 superconformal algebra and the affine Lie algebra A2(1), Transform. Groups 21 (2016), 299-327.
    MathSciNet     CrossRef

  4. D. Adamović and A. Milas, On some vertex algebras related to V1(sl(n)) and their characters, Transform. Groups 26 (2021), 1-30.
    MathSciNet     CrossRef

  5. D. Adamović, T. Creutzig, N. Genra and J. Yang, The vertex algebras V(p) and R(p), Comm. Math. Phys. 383 (2021), 1207-1241.
    MathSciNet     CrossRef

  6. D. Adamović, A. Milas and Q. Wang, On parafermion vertex algebras of sl(2) and sl(3) at level -3/2, Commun. Contemp. Math. 24 (2022), no. 1, Paper No. 2050086, 23 pp.
    MathSciNet     CrossRef

  7. T. Arakawa, Representation theory of W-algebras, Invent. Math. 169 (2007), 219-320.
    MathSciNet     CrossRef

  8. T. Arakawa, T. Creutzig and A. Linshaw, Cosets of Bershadsky-Polyakov algebras and rational W-algebras of type A, Selecta Math. (N.S.) 23 (2017), 2369-2395.
    MathSciNet     CrossRef

  9. T. Arakawa and E. Frenkel, Quantum Langlands duality of representations of W-algebras, Compos. Math. 155 (2019), 2235-2262.
    MathSciNet     CrossRef

  10. T. Arakawa, C. H. Lam and H. Yamada, Zhu's algebra, C2-algebra and C2-cofiniteness of parafermion vertex operator algebras, Adv. Math. 264 (2014), 261-295.
    MathSciNet     CrossRef

  11. K. Bringmann, J. Kaszian, A. Milas and C. Nazaroglu, Integral representations of rank two false theta functions and their modularity properties, Res. Math. Sci. 8 (2021), no. 4, Paper No. 54, 31 pp.
    MathSciNet     CrossRef

  12. K. Bringmann, J. Kaszian, A. Milas and S. Zwegers, Rank two false theta functions and Jacobi forms of negative definite matrix index, Adv. in Appl. Math. 112 (2020), 101946, 19 pp.
    MathSciNet     CrossRef

  13. K. Bringmann and A. Milas, W-algebras, higher rank false theta functions, and quantum dimensions, Selecta Math. (N.S.) 23 (2017), 1249-1278.
    MathSciNet     CrossRef

  14. T. Creutzig and A. Linshaw, Orbifolds of symplectic fermion algebras, Trans. Am. Math. Soc. 369 (2017), 467-494.
    MathSciNet     CrossRef

  15. C. Dong, C. H. Lam, Q. Wang and H. Yamada, The structure of parafermion vertex operator algebras, J. Algebra 323 (2010), 371-381.
    MathSciNet     CrossRef

  16. C. Dong, C. H. Lam and H. Yamada, W-algebras related to parafermion algebras, J. Algebra 322 (2009), 2366-2403.
    MathSciNet     CrossRef

  17. J. Fasquel, OPEs of rank two W-algebras, arXiv:2210.15728.

  18. B. Feigin and I. Yu Tipunin, Logarithmic CFTs connected with simple Lie algebras, Preprint, arXiv:1002.5047 (2010).

  19. I. Flandoli and S. Lentner, Logarithmic conformal field theories of type Bn, l=4 and symplectic fermions, J. Math. Phys. 59 (2018), no. 7, 071701, 35 pp.
    MathSciNet     CrossRef

  20. R. Goodman and N. R. Wallach, Symmetry, representations, and invariants, Grad. Texts in Math. 255, Springer, Dordrecht, 2009.
    MathSciNet     CrossRef

  21. M. Gorelik and V. Kac, On simplicity of vacuum modules, Adv. Math. 211 (2007), 621-677.
    MathSciNet     CrossRef

  22. R. Howe, E.-C. Tan and J. F. Willenbring, Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc. 357 (2005), 1601-1626.
    MathSciNet     CrossRef

  23. S. Kanade and A. Linshaw, Universal two-parameter even spin W-algebra, Adv. Math. 355 (2019), 106774, 58pp.
    MathSciNet     CrossRef

  24. J. Lepowsky and M. Primc, Structure of the Standard Modules for the Affine Lie Algebra A1(1), Contemp. Math., Vol. 46, American Mathematical Soc., Providence, RI, 1985.
    MathSciNet     CrossRef

  25. J. Lepowsky and R. L. Wilson, The structure of standard modules, I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), 199-290.
    MathSciNet     CrossRef

  26. A. Linshaw, Universal two-parameter W-algebra and vertex algebras of type W(2,3,...,N), Compos. Math. 157 (2021), 12-82.
    MathSciNet     CrossRef

  27. A. Milas and M. Penn, 2-permutation orbifolds of W-algebras, submitted.

  28. A. Milas, M. Penn and C. Sadowski, Permutation orbifolds of Virasoro vertex algebras and W-algebras, J. Algebra 570 (2021), 267-296.
    MathSciNet     CrossRef

  29. S. Sugimoto, On the Feigin-Tipunin conjecture, Selecta Math. (N.S.) 27 (2021), no. 5, Paper No. 86, 43 pp.
    MathSciNet     CrossRef

  30. W.Wang, W1+∞-algebra, W3-algebra, and Friedan-Martinec-Shenker bosonization, Comm. Math. Phys. 195 (1998), 95-111.
    MathSciNet     CrossRef


Rad HAZU Home Page