Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 259-281.
LOGARITHMIC VERTEX ALGEBRAS RELATED TO sp(4)
Dražen Adamović and Antun Milas
Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: adamovic@math.hr
Department of Mathematics and Statistics, SUNY-Albany, Albany NY 12222, USA
e-mail: amilas@albany.edu
Abstract. We present several results and conjectures pertaining to
parafermion vertex algebra and related logarithmic vertex algebras. Starting
from the tensor product of two copies of the singlet vertex algebra
M(2), we consider various subalgebras that appear in its decomposition
including N-1(sl(2)) and its Z2-fixed point algebra,
and the S2-symmetric
orbifold of the singlet vertex algebra M(2). In particular, we show that
N-1(sl(2)) has an extension to a W-algebra of type (2, 3, 4, 5, 6, 7, 8).
Finally we state some conjectures about singlet and triplet type W-algebras
of type sp(4) and their characters.
2020 Mathematics Subject Classification.
17B69, 17B20, 17B67.
Key words and phrases. Vertex algebra, parafermion algebra.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/94kl4c1j8m
References:
- T. Abe, A Z2-orbifold model of the symplectic fermionic vertex operator superalgebra,
Math. Z. 255 (2007), 755-792
MathSciNet
CrossRef
- D. Adamović, Classification of irreducible modules of certain subalgebras of free
boson vertex algebra, J. Algebra 270 (2003), 115-132
MathSciNet
CrossRef
- D. Adamović, A realization of certain modules for the N = 4 superconformal
algebra and the affine Lie algebra A2(1), Transform. Groups 21 (2016), 299-327.
MathSciNet
CrossRef
- D. Adamović and A. Milas, On some vertex algebras related to V1(sl(n)) and
their characters, Transform. Groups 26 (2021), 1-30.
MathSciNet
CrossRef
- D. Adamović, T. Creutzig, N. Genra and J. Yang, The vertex algebras V(p) and
R(p), Comm. Math. Phys. 383 (2021), 1207-1241.
MathSciNet
CrossRef
- D. Adamović, A. Milas and Q. Wang, On parafermion vertex algebras of sl(2)
and sl(3) at level -3/2, Commun. Contemp. Math. 24 (2022), no. 1, Paper No.
2050086, 23 pp.
MathSciNet
CrossRef
- T. Arakawa, Representation theory of W-algebras, Invent. Math. 169 (2007),
219-320.
MathSciNet
CrossRef
- T. Arakawa, T. Creutzig and A. Linshaw, Cosets of Bershadsky-Polyakov algebras
and rational W-algebras of type A, Selecta Math. (N.S.) 23 (2017), 2369-2395.
MathSciNet
CrossRef
- T. Arakawa and E. Frenkel, Quantum Langlands duality of representations of
W-algebras, Compos. Math. 155 (2019), 2235-2262.
MathSciNet
CrossRef
- T. Arakawa, C. H. Lam and H. Yamada, Zhu's algebra, C2-algebra and C2-cofiniteness of
parafermion vertex operator algebras, Adv. Math. 264 (2014), 261-295.
MathSciNet
CrossRef
- K. Bringmann, J. Kaszian, A. Milas and C. Nazaroglu, Integral representations of
rank two false theta functions and their modularity properties, Res. Math. Sci. 8 (2021), no. 4, Paper No. 54, 31 pp.
MathSciNet
CrossRef
- K. Bringmann, J. Kaszian, A. Milas and S. Zwegers, Rank two false theta functions
and Jacobi forms of negative definite matrix index, Adv. in Appl. Math. 112 (2020), 101946, 19 pp.
MathSciNet
CrossRef
- K. Bringmann and A. Milas, W-algebras, higher rank false theta functions, and
quantum dimensions, Selecta Math. (N.S.) 23 (2017), 1249-1278.
MathSciNet
CrossRef
- T. Creutzig and A. Linshaw, Orbifolds of symplectic fermion algebras, Trans. Am.
Math. Soc. 369 (2017), 467-494.
MathSciNet
CrossRef
- C. Dong, C. H. Lam, Q. Wang and H. Yamada, The structure of parafermion
vertex operator algebras, J. Algebra 323 (2010), 371-381.
MathSciNet
CrossRef
- C. Dong, C. H. Lam and H. Yamada, W-algebras related to parafermion algebras,
J. Algebra 322 (2009), 2366-2403.
MathSciNet
CrossRef
- J. Fasquel, OPEs of rank two W-algebras, arXiv:2210.15728.
- B. Feigin and I. Yu Tipunin, Logarithmic CFTs connected with simple Lie algebras,
Preprint, arXiv:1002.5047 (2010).
- I. Flandoli and S. Lentner, Logarithmic conformal field theories of type Bn, l=4 and
symplectic fermions, J. Math. Phys. 59 (2018), no. 7, 071701, 35 pp.
MathSciNet
CrossRef
- R. Goodman and N. R. Wallach, Symmetry, representations, and invariants, Grad. Texts in Math. 255,
Springer, Dordrecht, 2009.
MathSciNet
CrossRef
- M. Gorelik and V. Kac, On simplicity of vacuum modules, Adv. Math. 211 (2007),
621-677.
MathSciNet
CrossRef
- R. Howe, E.-C. Tan and J. F. Willenbring, Stable branching rules for classical
symmetric pairs, Trans. Amer. Math. Soc. 357 (2005), 1601-1626.
MathSciNet
CrossRef
- S. Kanade and A. Linshaw, Universal two-parameter even spin W∞-algebra, Adv.
Math. 355 (2019), 106774, 58pp.
MathSciNet
CrossRef
- J. Lepowsky and M. Primc, Structure of the Standard Modules for the Affine Lie
Algebra A1(1), Contemp. Math., Vol. 46, American Mathematical Soc., Providence, RI, 1985.
MathSciNet
CrossRef
- J. Lepowsky and R. L. Wilson, The structure of standard modules, I. Universal
algebras and the Rogers-Ramanujan identities, Invent. Math. 77
(1984), 199-290.
MathSciNet
CrossRef
- A. Linshaw, Universal two-parameter W∞-algebra and vertex algebras of type
W(2,3,...,N), Compos. Math. 157 (2021), 12-82.
MathSciNet
CrossRef
- A. Milas and M. Penn, 2-permutation orbifolds of W-algebras,
submitted.
- A. Milas, M. Penn and C. Sadowski, Permutation orbifolds of Virasoro vertex
algebras and W-algebras, J. Algebra 570 (2021), 267-296.
MathSciNet
CrossRef
- S. Sugimoto, On the Feigin-Tipunin conjecture, Selecta Math. (N.S.) 27 (2021), no. 5, Paper No. 86, 43 pp.
MathSciNet
CrossRef
- W.Wang, W1+∞-algebra, W3-algebra, and Friedan-Martinec-Shenker bosonization,
Comm. Math. Phys. 195 (1998), 95-111.
MathSciNet
CrossRef
Rad HAZU Home Page