Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 223-243.
ON PRIME ELEMENTS IN COMMUTATIVE DOMAINS
Boris Širola
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: sirola@math.hr
Abstract. We present some results concerning prime elements in integral
domains. In particular we deal with the following question: Does
every order in an algebraic number field has infinitely many prime elements?
Then we show that for real quadratic fields the answer to that
question is positive. We also give certain partial results and examples
about prime polynomials in two or more variables with coefficients from
arbitrary integral domain.
2020 Mathematics Subject Classification.
13G05, 11R04, 11R09.
Key words and phrases. Prime element, irreducible element, integral domain, unique
factorization domain, quadratic field, ring of integers, order.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ygjwrc21ly
References:
- S. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge Univ.
Press, Cambridge, 2004.
MathSciNet
- P. Bachmann, Die Analytische Zahlentheorie, Teubner, Leipzig, 1894.
- Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, New York, 1966.
MathSciNet
- N. Bourbaki, Commutative algebra, Chapters 1-7, Springer-Verlag, New York, 1985.
MathSciNet
- L. E. Dickson, History of the Theory of Numbers, Volume 2: Diophantine analysis,
Chelsea, New York, 1966.
MathSciNet
- A. Dujella, Number theory, Školska knjiga, Zagreb, 2021.
MathSciNet
- A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Stud. Adv. Math. 27,
Cambridge Univ. Press, Cambridge, 1994.
MathSciNet
- T. W. Hungerford, Algebra, Grad. Texts in Math., Vol. 73, Springer, New York, 1974.
MathSciNet
- S. Lang, Algebra, Third Ed., Addison Wesley, Reading, 1994.
MathSciNet
- S. MacLane, The Schönemann-Eisenstein irreducibility criteria in terms of prime
ideals, Trans. Amer. Math. Soc. 43 (1938), 226-239.
MathSciNet
CrossRef
- J. Neukirch, Algebraic Number Theory, Springer, Berlin, 1999.
MathSciNet
CrossRef
- I. Niven, H. S. Zuckerman and H. L. Montgomery, An introduction to the theory of
numbers, Wiley, New York, 1991.
MathSciNet
- J. J. Rotman, Advanced modern algebra, Second Ed., Grad. Stud. Math., Vol. 114,
Amer. Math. Soc., Providence, 2010.
MathSciNet
CrossRef
- B. Širola, A generalization of Dumas-Eisenstein criterion, in preparation.
- P. J. Weinberger, Real quadratic fields with class numbers divisible by n, J. Number
Theory 5 (1973), 237-241.
MathSciNet
CrossRef
- Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka
J. Math. 7 (1970), 57-76.
MathSciNet
Rad HAZU Home Page