Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 223-243.

ON PRIME ELEMENTS IN COMMUTATIVE DOMAINS

Boris Širola

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: sirola@math.hr


Abstract.   We present some results concerning prime elements in integral domains. In particular we deal with the following question: Does every order in an algebraic number field has infinitely many prime elements? Then we show that for real quadratic fields the answer to that question is positive. We also give certain partial results and examples about prime polynomials in two or more variables with coefficients from arbitrary integral domain.

2020 Mathematics Subject Classification.   13G05, 11R04, 11R09.

Key words and phrases.   Prime element, irreducible element, integral domain, unique factorization domain, quadratic field, ring of integers, order.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ygjwrc21ly


References:

  1. S. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 2004.
    MathSciNet

  2. P. Bachmann, Die Analytische Zahlentheorie, Teubner, Leipzig, 1894.

  3. Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, New York, 1966.
    MathSciNet

  4. N. Bourbaki, Commutative algebra, Chapters 1-7, Springer-Verlag, New York, 1985.
    MathSciNet

  5. L. E. Dickson, History of the Theory of Numbers, Volume 2: Diophantine analysis, Chelsea, New York, 1966.
    MathSciNet

  6. A. Dujella, Number theory, Školska knjiga, Zagreb, 2021.
    MathSciNet

  7. A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Stud. Adv. Math. 27, Cambridge Univ. Press, Cambridge, 1994.
    MathSciNet

  8. T. W. Hungerford, Algebra, Grad. Texts in Math., Vol. 73, Springer, New York, 1974.
    MathSciNet

  9. S. Lang, Algebra, Third Ed., Addison Wesley, Reading, 1994.
    MathSciNet

  10. S. MacLane, The Schönemann-Eisenstein irreducibility criteria in terms of prime ideals, Trans. Amer. Math. Soc. 43 (1938), 226-239.
    MathSciNet     CrossRef

  11. J. Neukirch, Algebraic Number Theory, Springer, Berlin, 1999.
    MathSciNet     CrossRef

  12. I. Niven, H. S. Zuckerman and H. L. Montgomery, An introduction to the theory of numbers, Wiley, New York, 1991.
    MathSciNet

  13. J. J. Rotman, Advanced modern algebra, Second Ed., Grad. Stud. Math., Vol. 114, Amer. Math. Soc., Providence, 2010.
    MathSciNet     CrossRef

  14. B. Širola, A generalization of Dumas-Eisenstein criterion, in preparation.

  15. P. J. Weinberger, Real quadratic fields with class numbers divisible by n, J. Number Theory 5 (1973), 237-241.
    MathSciNet     CrossRef

  16. Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76.
    MathSciNet


Rad HAZU Home Page