Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 193-222.

SIMILITUDE EXCEPTIONAL THETA CORRESPONDENCES

Petar Bakić, Wee Teck Gan and Gordan Savin

Department of Mathematics, University of Utah, Salt Lake City, UT, USA
e-mail: bakic@math.utah.edu
e-mail: savin@math.utah.edu

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076
e-mail: matgwt@nus.edu.sg


Abstract.   We describe a systematic way of constructing dual pairs of similitude groups. We study the theta correspondences arising in this way and prove that Howe duality holds for the similitude dual pair if and only if it holds for the original reductive dual pair used in our construction. Several examples of exceptional correspondences are discussed.

2020 Mathematics Subject Classification.   11S90, 17A75, 17C40.

Key words and phrases.   theta correspondences, similitude groups.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/mnlqgc3qqy


References:

  1. C. J. Bushnell and G. Henniart, Local Langlands conjecture for GL(2), Springer-Verlag, Berlin-Heidelberg, 2006.
    MathSciNet     CrossRef

  2. T. De Medts, Structurable algebras of skew-dimension one and Hermitian cubic norm structures, Comm. Algebra 47 (2019), 154-172.
    MathSciNet     CrossRef

  3. W. T. Gan and G. Savin, On minimal representations definitions and properties, Represent. Theory 9 (2005), 46-93.
    MathSciNet     CrossRef

  4. W. T. Gan and G. Savin, Twisted composition algebras and Arthur packets of triality Spin(8), Pure and Applied Math. Q. 18 (2022), 1951-2130.
    MathSciNet

  5. H. Grobner and S. Žunar, On the notion of the parabolic and the cuspidal support of smooth-automorphic forms and smooth-automorphic representations, Preprint, arXiv:2108.06369.

  6. M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über padischen Körpern II, Math. Z. 89 (1965), 250-272.
    MathSciNet     CrossRef

  7. M. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The Book of Involutions, AMS Colloquium Publications, Vol. 44, American Mathematical Society, Providence, RI, 1998.
    MathSciNet     CrossRef

  8. S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), 229-255.
    MathSciNet     CrossRef

  9. O. Loos, Jordan pairs, Lecture Notes in Math., Vol. 460, Springer-Verlag, Berlin-New York, 1975.
    MathSciNet

  10. K. Magaard and G. Savin, Exceptional Θ-correspondences I, Compositio Math. 107 (1997), 89-123.
    MathSciNet     CrossRef

  11. B. Roberts, The theta correspondence for similitudes, Israel J. Math. 94 (1996), 285-317.
    MathSciNet     CrossRef

  12. K. Rummelhart, Minimal representations of exceptional p-adic groups, Represent. Theory 1 (1997), 133-181.
    MathSciNet     CrossRef

  13. M. Tadić, Notes on representations of non-archimedean SL(n), Pacific J. Math. 152 (1992), 375-396.
    MathSciNet

  14. N. Wallach, C vectors, in: Representations of Lie groups and quantum groups (Trento, 1993), Pitman Res. Notes Math. Ser., 311, Longman Sci. Tech., Harlow, 1994, pp. 205-270.
    MathSciNet


Rad HAZU Home Page