Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 185-192.
AN ELLIPTIC CURVE OVER Q(u) WITH TORSION Z/4Z AND RANK 6
Andrej Dujella and Juan Carlos Peral
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: duje@math.hr
Departamento de Matemáticas, Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao, Spain
e-mail: juancarlos.peral@ehu.es
Abstract. In this paper, we present the construction of an elliptic
curve over Q(u) with torsion group Z/4Z and rank 6. Previously only rank
5 examples for such curves were known.
2020 Mathematics Subject Classification.
11G05.
Key words and phrases. Elliptic curves, rank, torsion group.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y54jof4o2m
References:
- J. Aguirre, A. Dujella, M. Jukić Bokun and J. C. Peral, High rank elliptic curves
with prescribed torsion group over quadratic fields, Period. Math. Hungar. 68 (2014),
222-230.
MathSciNet
CrossRef
- A. Dujella, High rank elliptic curves with prescribed torsion,
https://web.math.pmf.unizg.hr/˜duje/tors/tors.html.
- A. Dujella, Infinite families of elliptic curves with high rank and prescribed torsion,
https://web.math.pmf.unizg.hr/˜duje/tors/generic.html.
- A. Dujella, M. Kazalicki and J. C. Peral, Elliptic curves with torsion groups Z/8Z and
Z/2Z × Z/6Z, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 115
(2021), Article 169, (24pp).
MathSciNet
CrossRef
- A. Dujella and J. C. Peral, Elliptic curves with torsion group Z/8Z
or Z/2Z × Z/6Z,
in: Trends in Number Theory, Contemp. Math. 649 (2015), 47-62.
MathSciNet
CrossRef
- A. Dujella and J. C. Peral, Construction of high rank elliptic curves, J. Geom. Analysis
31 (2021), 6698-6724.
MathSciNet
CrossRef
- N. Elkies, Three lectures on elliptic surfaces and curves of high rank,
arXiv:0709.2908, (2007).
- N. Elkies and Z. Klagsbrun, New rank records for elliptic curves having rational torsion,
in: Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Mathematical
Sciences Publishers, Berkeley, 2020, pp. 233-250.
MathSciNet
CrossRef
- I. Gusić and P. Tadić, A remark on the injectivity of the specialization homomorphism,
Glas. Mat. Ser. III 47 (2012), 265-275.
MathSciNet
CrossRef
- I. Gusić and P. Tadić, Injectivity of the specialization homomorphism of elliptic curves,
J. Number Theory 148 (2015), 137-152.
MathSciNet
CrossRef
- L. Halbeisen, N. Hungerbühler, A. Shamsi Zargar and M. Voznyy, A geometric approach
to elliptic curves with torsion groups Z/10Z, Z/12Z,
Z/14Z, and Z/16Z,
Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 27 (2023), 87-109.
MathSciNet
CrossRef
- H. Inose, Defining equations of singular K3 surfaces and a notion of isogeny, in:
Proceedings of the International Symposium on Algebraic Geometry, Kinokuniya Book
Store, Tokyo, 1978, pp. 495-502.
MathSciNet
- F. Khoshnam and D. Moody, High rank elliptic curves with torsion Z/4Z induced by
Kihara's elliptic curves, Integers 16 (2016), Paper No. A70, 12 pp.
MathSciNet
- S. Kihara, On the rank of elliptic curves with a rational point of order 4, Proc. Japan
Acad. Ser A Math. Sci. 80 (2004), 26-27.
MathSciNet
- S. Kihara, On the rank of elliptic curves with a rational point of order 4. II, Proc.
Japan Acad. Ser A Math. Sci. 80 (2004), 158-159
MathSciNet
- Z. Klagsbrun, T. Sherman and J. Weigandt, The Elkies curve has rank 28 subject only
to GRH, Math. Comp. 88 (2019), 837-846
MathSciNet
CrossRef
- O. Lecacheux, Rang de courbes elliptiques dont le groupe de torsion est non trivial,
Ann. Sci. Math. Québec 28 (2004), 145-151
MathSciNet
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ.
Math. 47 (1977), 33-186.
MathSciNet
- J. Park, B. Poonen, J. Voight and M. M. Wood, A heuristic for boundedness of ranks
of elliptic curves, J. Eur. Math. Soc. (JEMS) 21 (2019), 2859-2903.
MathSciNet
CrossRef
- M. Schütt and T. Shioda, Mordell-Weil Lattices, Springer, Singapore, 2019.
MathSciNet
CrossRef
Rad HAZU Home Page