Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 185-192.

AN ELLIPTIC CURVE OVER Q(u) WITH TORSION Z/4Z AND RANK 6

Andrej Dujella and Juan Carlos Peral

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: duje@math.hr

Departamento de Matemáticas, Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao, Spain
e-mail: juancarlos.peral@ehu.es


Abstract.   In this paper, we present the construction of an elliptic curve over Q(u) with torsion group Z/4Z and rank 6. Previously only rank 5 examples for such curves were known.

2020 Mathematics Subject Classification.   11G05.

Key words and phrases.   Elliptic curves, rank, torsion group.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/y54jof4o2m


References:

  1. J. Aguirre, A. Dujella, M. Jukić Bokun and J. C. Peral, High rank elliptic curves with prescribed torsion group over quadratic fields, Period. Math. Hungar. 68 (2014), 222-230.
    MathSciNet     CrossRef

  2. A. Dujella, High rank elliptic curves with prescribed torsion, https://web.math.pmf.unizg.hr/˜duje/tors/tors.html.

  3. A. Dujella, Infinite families of elliptic curves with high rank and prescribed torsion, https://web.math.pmf.unizg.hr/˜duje/tors/generic.html.

  4. A. Dujella, M. Kazalicki and J. C. Peral, Elliptic curves with torsion groups Z/8Z and Z/2Z × Z/6Z, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 115 (2021), Article 169, (24pp).
    MathSciNet     CrossRef

  5. A. Dujella and J. C. Peral, Elliptic curves with torsion group Z/8Z or Z/2Z × Z/6Z, in: Trends in Number Theory, Contemp. Math. 649 (2015), 47-62.
    MathSciNet     CrossRef

  6. A. Dujella and J. C. Peral, Construction of high rank elliptic curves, J. Geom. Analysis 31 (2021), 6698-6724.
    MathSciNet     CrossRef

  7. N. Elkies, Three lectures on elliptic surfaces and curves of high rank, arXiv:0709.2908, (2007).

  8. N. Elkies and Z. Klagsbrun, New rank records for elliptic curves having rational torsion, in: Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Mathematical Sciences Publishers, Berkeley, 2020, pp. 233-250.
    MathSciNet     CrossRef

  9. I. Gusić and P. Tadić, A remark on the injectivity of the specialization homomorphism, Glas. Mat. Ser. III 47 (2012), 265-275.
    MathSciNet     CrossRef

  10. I. Gusić and P. Tadić, Injectivity of the specialization homomorphism of elliptic curves, J. Number Theory 148 (2015), 137-152.
    MathSciNet     CrossRef

  11. L. Halbeisen, N. Hungerbühler, A. Shamsi Zargar and M. Voznyy, A geometric approach to elliptic curves with torsion groups Z/10Z, Z/12Z, Z/14Z, and Z/16Z, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 27 (2023), 87-109.
    MathSciNet     CrossRef

  12. H. Inose, Defining equations of singular K3 surfaces and a notion of isogeny, in: Proceedings of the International Symposium on Algebraic Geometry, Kinokuniya Book Store, Tokyo, 1978, pp. 495-502.
    MathSciNet

  13. F. Khoshnam and D. Moody, High rank elliptic curves with torsion Z/4Z induced by Kihara's elliptic curves, Integers 16 (2016), Paper No. A70, 12 pp.
    MathSciNet

  14. S. Kihara, On the rank of elliptic curves with a rational point of order 4, Proc. Japan Acad. Ser A Math. Sci. 80 (2004), 26-27.
    MathSciNet

  15. S. Kihara, On the rank of elliptic curves with a rational point of order 4. II, Proc. Japan Acad. Ser A Math. Sci. 80 (2004), 158-159
    MathSciNet

  16. Z. Klagsbrun, T. Sherman and J. Weigandt, The Elkies curve has rank 28 subject only to GRH, Math. Comp. 88 (2019), 837-846
    MathSciNet     CrossRef

  17. O. Lecacheux, Rang de courbes elliptiques dont le groupe de torsion est non trivial, Ann. Sci. Math. Québec 28 (2004), 145-151
    MathSciNet

  18. B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33-186.
    MathSciNet

  19. J. Park, B. Poonen, J. Voight and M. M. Wood, A heuristic for boundedness of ranks of elliptic curves, J. Eur. Math. Soc. (JEMS) 21 (2019), 2859-2903.
    MathSciNet     CrossRef

  20. M. Schütt and T. Shioda, Mordell-Weil Lattices, Springer, Singapore, 2019.
    MathSciNet     CrossRef


Rad HAZU Home Page