Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 151-184.

ON SWAN EXPONENTS OF SYMMETRIC AND EXTERIOR SQUARE GALOIS REPRESENTATIONS

Guy Henniart and Masao Oi

Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
e-mail: Guy.Henniart@math.u-psud.fr

Department of Mathematics (Hakubi center), Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, Japan
e-mail: masaooi@math.kyoto-u.ac.jp


Abstract.   Let F be a local non-Archimedean field and E a finite Galois extension of F, with Galois group G. If ρ is a representation of G on a complex vector space V, we may compose it with any tensor operation R on V, and get another representation R ○ ρ. We study the relation between the Swan exponents Sw(ρ) and Sw(R ○ ρ), with a particular attention to the cases where R is symmetric square or exterior square. Indeed those cases intervene in the local Langlands correspondence for split classical groups over F, via the formal degree conjecture, and we present some applications of our work to the explicit description of the Langlands parameter of simple cuspidal representations. For irreducible ρ our main results determine Sw(Sym2ρ) and Sw(∧2ρ) from Sw(ρ) when the residue characteristic p of F is odd, and bound them in terms of Sw(ρ) when p is 2. In that case where p is 2 we conjecture stronger bounds, for which we provide evidence.

2020 Mathematics Subject Classification.   11F80, 11S37, 22E50.

Key words and phrases.   Swan exponents, Galois representations, local Langlands correspondence.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yvjrdcde6y


References:

  1. M. Adrian, G. Henniart, E. Kaplan and M. Oi, Simple supercuspidal L-packets of split special orthogonal groups over dyadic fields, preprint, arXiv:2305.09076, 2023.

  2. U. K. Anandavardhanan and A. K. Mondal, On the conductor of certain local L-functions, J. Ramanujan Math. Soc. 31 (2016), 137-156.
    MathSciNet

  3. J. Arthur, Unipotent automorphic representations: conjectures, Astérisque (1989), no. 171-172, 13-71.
    MathSciNet

  4. J. Arthur, The endoscopic classification of representations: Orthogonal and symplectic groups, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013.
    MathSciNet     CrossRef

  5. R. Beuzart-Plessis, On the formal degree conjecture for classical groups, Oberwolfach Rep., Automorphic forms, geometry and arithmetic (hybrid meeting) 18 (2021), no. 3, 2096-2101.

  6. J. P. Buhler, Icosahedral Galois representations, Lecture Notes in Math., Vol. 654, Springer-Verlag, Berlin-New York, 1978.
    MathSciNet

  7. C. J. Bushnell and A. Fröhlich, Gauss sums and p-adic division algebras, Lecture Notes in Math., Vol. 987, Springer-Verlag, Berlin-New York, 1983.
    MathSciNet

  8. C. J. Bushnell and G. Henniart, Local tame lifting for GL(N). I. Simple characters, Inst. Hautes Études Sci. Publ. Math. (1996), no. 83, 105-233.
    MathSciNet

  9. C. J. Bushnell and G. Henniart, The local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften, vol. 335, Springer-Verlag, Berlin, 2006.
    MathSciNet     CrossRef

  10. C. J. Bushnell and G. Henniart, The essentially tame Jacquet-Langlands correspondence for inner forms of GL(n), Pure Appl. Math. Q. 7 (2011), no. 3, Special Issue: In honor of Jacques Tits, 469-538.
    MathSciNet     CrossRef

  11. C. J. Bushnell and G. Henniart, Strong exponent bounds for the local Rankin-Selberg convolution, Bull. Iranian Math. Soc. 43 (2017), 143-167.
    MathSciNet

  12. C. J. Bushnell and G. Henniart, Local Langlands correspondence and ramification for Carayol representations, Compos. Math. 155 (2019), 1959-2038.
    MathSciNet     CrossRef

  13. C. J. Bushnell, G. M. Henniart and P. C. Kutzko, Local Rankin-Selberg convolutions for GLn: explicit conductor formula, J. Amer. Math. Soc. 11 (1998), 703-730.
    MathSciNet     CrossRef

  14. C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups, Ann. of Math. Stud., vol. 129, Princeton University Press, Princeton, NJ, 1993.
    MathSciNet     CrossRef

  15. P. Deligne, Les constantes des équations fonctionnelles des fonctions L, in: Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math., Vol. 349, Springer-Verlag, Berlin-New York, 1973, pp. 501-597.
    MathSciNet

  16. B. H. Gross and M. Reeder, Arithmetic invariants of discrete Langlands parameters, Duke Math. J. 154 (2010), 431-508.
    MathSciNet     CrossRef

  17. R. L. Griess, Jr., Basic conjugacy theorems for G2, Invent. Math. 121 (1995), 257-277.
    MathSciNet     CrossRef

  18. M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, With an appendix by Vladimir G. Berkovich, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001.
    MathSciNet

  19. G. Henniart, Représentations du groupe de Weil d'un corps local, Enseign. Math. (2) 26 (1980), 155-172.
    MathSciNet

  20. G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math. 139 (2000), 439-455.
    MathSciNet     CrossRef

  21. G. Henniart, Cuspidal representations of Sp(2n,Q2) with irreducible Galois parameter, appendix to "Local transfer for quasi-split classical groups and congruences mod l" by Mínguez and Sécherre, preprint, arXiv:2302.04532, 2023.

  22. G. Henniart and M. Oi, Simple supercuspidal L-packets of symplectic groups over dyadic fields, preprint, arXiv:2207.12985, 2022.

  23. K. Hiraga, A. Ichino and T. Ikeda, Correction to: "Formal degrees and adjoint γ-factors", J. Amer. Math. Soc. 21 (2008), 1211-1213.
    MathSciNet     CrossRef

  24. K. Hiraga, A. Ichino and T. Ikeda, Formal degrees and adjoint γ-factors, J. Amer. Math. Soc. 21 (2008), 283-304.
    MathSciNet     CrossRef

  25. A. Ichino, E. Lapid, and Z. Mao, On the formal degrees of square-integrable representations of odd special orthogonal and metaplectic groups, Duke Math. J. 166 (2017), 1301-1348.
    MathSciNet     CrossRef

  26. C. Khare, M. Larsen, and G. Savin, Functoriality and the inverse Galois problem. II. Groups of type Bn and G2, Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), 37-70.
    MathSciNet

  27. Y. Kiliç, Inequalities on Swan conductors, Thesis, Laboratoire de Mathématiques d'Orsay, 2020, https://theses.hal.science/tel-02612976/.

  28. Y. Mieda, On the formal degree conjecture for simple supercuspidal representations, Math. Res. Lett. 28 (2021), 1227-1242.
    MathSciNet     CrossRef

  29. M. Oi, Simple supercuspidal L-packets of quasi-split classical groups, arXiv:1805.01400, to appear in Mem. Amer. Math. Soc.

  30. D. Prasad, Some remarks on representations of a division algebra and of the Galois group of a local field, J. Number Theory 74 (1999), 73-97.
    MathSciNet     CrossRef

  31. J.-P. Serre, Linear representations of finite groups, Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977.
    MathSciNet

  32. J.-P. Serre, Local fields, Translated from the French by Marvin Jay Greenberg, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979.
    MathSciNet

  33. J. Tate, Number theoretic background, in: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, American Mathematical Society, Providence, RI, 1979, pp. 3-26.
    MathSciNet


Rad HAZU Home Page