Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 151-184.
ON SWAN EXPONENTS OF SYMMETRIC AND EXTERIOR SQUARE GALOIS REPRESENTATIONS
Guy Henniart and Masao Oi
Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
e-mail: Guy.Henniart@math.u-psud.fr
Department of Mathematics (Hakubi center), Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, Japan
e-mail: masaooi@math.kyoto-u.ac.jp
Abstract. Let F be a local non-Archimedean field and E a finite Galois
extension of F, with Galois group G. If ρ is a representation of G on a
complex vector space V, we may compose it with any tensor operation R
on V, and get another representation R ○ ρ. We study the relation between
the Swan exponents Sw(ρ) and Sw(R ○ ρ), with a particular attention to the
cases where R is symmetric square or exterior square. Indeed those cases
intervene in the local Langlands correspondence for split classical groups
over F, via the formal degree conjecture, and we present some applications
of our work to the explicit description of the Langlands parameter of simple
cuspidal representations. For irreducible ρ our main results determine
Sw(Sym2ρ) and Sw(∧2ρ) from Sw(ρ) when the residue characteristic p of
F is odd, and bound them in terms of Sw(ρ) when p is 2. In that case
where p is 2 we conjecture stronger bounds, for which we provide evidence.
2020 Mathematics Subject Classification.
11F80, 11S37, 22E50.
Key words and phrases. Swan exponents, Galois representations, local Langlands correspondence.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yvjrdcde6y
References:
- M. Adrian, G. Henniart, E. Kaplan and M. Oi, Simple supercuspidal L-packets of split
special orthogonal groups over dyadic fields, preprint, arXiv:2305.09076, 2023.
- U. K. Anandavardhanan and A. K. Mondal, On the conductor of certain local L-functions,
J. Ramanujan Math. Soc. 31 (2016), 137-156.
MathSciNet
- J. Arthur, Unipotent automorphic representations: conjectures, Astérisque (1989),
no. 171-172, 13-71.
MathSciNet
- J. Arthur, The endoscopic classification of representations: Orthogonal and symplectic
groups, American Mathematical Society Colloquium Publications, vol. 61, American
Mathematical Society, Providence, RI, 2013.
MathSciNet
CrossRef
- R. Beuzart-Plessis, On the formal degree conjecture for classical groups, Oberwolfach
Rep., Automorphic forms, geometry and arithmetic (hybrid meeting) 18 (2021), no. 3,
2096-2101.
- J. P. Buhler, Icosahedral Galois representations, Lecture Notes in Math., Vol. 654,
Springer-Verlag, Berlin-New York, 1978.
MathSciNet
- C. J. Bushnell and A. Fröhlich, Gauss sums and p-adic division algebras, Lecture Notes
in Math., Vol. 987, Springer-Verlag, Berlin-New York, 1983.
MathSciNet
- C. J. Bushnell and G. Henniart, Local tame lifting for GL(N). I. Simple characters,
Inst. Hautes Études Sci. Publ. Math. (1996), no. 83, 105-233.
MathSciNet
- C. J. Bushnell and G. Henniart, The local Langlands conjecture for GL(2), Grundlehren
der Mathematischen Wissenschaften, vol. 335, Springer-Verlag, Berlin, 2006.
MathSciNet
CrossRef
- C. J. Bushnell and G. Henniart, The essentially tame Jacquet-Langlands correspondence
for inner forms of GL(n), Pure Appl. Math. Q. 7 (2011), no. 3, Special Issue:
In honor of Jacques Tits, 469-538.
MathSciNet
CrossRef
- C. J. Bushnell and G. Henniart, Strong exponent bounds for the local Rankin-Selberg
convolution, Bull. Iranian Math. Soc. 43 (2017), 143-167.
MathSciNet
- C. J. Bushnell and G. Henniart, Local Langlands correspondence and ramification for
Carayol representations, Compos. Math. 155 (2019), 1959-2038.
MathSciNet
CrossRef
- C. J. Bushnell, G. M. Henniart and P. C. Kutzko, Local Rankin-Selberg convolutions
for GLn: explicit conductor formula, J. Amer. Math. Soc. 11 (1998), 703-730.
MathSciNet
CrossRef
- C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups,
Ann. of Math. Stud., vol. 129, Princeton University Press, Princeton,
NJ, 1993.
MathSciNet
CrossRef
- P. Deligne, Les constantes des équations fonctionnelles des fonctions L, in: Modular
functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp,
1972), Lecture Notes in Math., Vol. 349, Springer-Verlag, Berlin-New York, 1973, pp. 501-597.
MathSciNet
- B. H. Gross and M. Reeder, Arithmetic invariants of discrete Langlands parameters,
Duke Math. J. 154 (2010), 431-508.
MathSciNet
CrossRef
- R. L. Griess, Jr., Basic conjugacy theorems for G2, Invent. Math. 121 (1995), 257-277.
MathSciNet
CrossRef
- M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties,
With an appendix by Vladimir G. Berkovich,
Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton,
NJ, 2001.
MathSciNet
- G. Henniart, Représentations du groupe de Weil d'un corps local, Enseign. Math. (2)
26 (1980), 155-172.
MathSciNet
- G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps
p-adique, Invent. Math. 139 (2000), 439-455.
MathSciNet
CrossRef
- G. Henniart, Cuspidal representations of Sp(2n,Q2) with irreducible Galois parameter,
appendix to "Local transfer for quasi-split classical groups and congruences mod l" by
Mínguez and Sécherre, preprint, arXiv:2302.04532, 2023.
- G. Henniart and M. Oi, Simple supercuspidal L-packets of symplectic groups over
dyadic fields, preprint, arXiv:2207.12985, 2022.
- K. Hiraga, A. Ichino and T. Ikeda, Correction to: "Formal degrees and adjoint γ-factors",
J. Amer. Math. Soc. 21 (2008), 1211-1213.
MathSciNet
CrossRef
- K. Hiraga, A. Ichino and T. Ikeda, Formal degrees and adjoint γ-factors, J. Amer.
Math. Soc. 21 (2008), 283-304.
MathSciNet
CrossRef
- A. Ichino, E. Lapid, and Z. Mao, On the formal degrees of square-integrable representations
of odd special orthogonal and metaplectic groups, Duke Math. J. 166 (2017),
1301-1348.
MathSciNet
CrossRef
- C. Khare, M. Larsen, and G. Savin, Functoriality and the inverse Galois problem. II.
Groups of type Bn and G2, Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), 37-70.
MathSciNet
- Y. Kiliç, Inequalities on Swan conductors, Thesis, Laboratoire de Mathématiques d'Orsay, 2020,
https://theses.hal.science/tel-02612976/.
- Y. Mieda, On the formal degree conjecture for simple supercuspidal representations,
Math. Res. Lett. 28 (2021), 1227-1242.
MathSciNet
CrossRef
- M. Oi, Simple supercuspidal L-packets of quasi-split classical groups,
arXiv:1805.01400, to appear in Mem. Amer. Math. Soc.
- D. Prasad, Some remarks on representations of a division algebra and of the Galois
group of a local field, J. Number Theory 74 (1999), 73-97.
MathSciNet
CrossRef
- J.-P. Serre, Linear representations of finite groups,
Translated from the second French edition by Leonard L. Scott,
Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977.
MathSciNet
- J.-P. Serre, Local fields, Translated from the French by Marvin Jay Greenberg,
Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979.
MathSciNet
- J. Tate, Number theoretic background, in: Automorphic forms, representations and
L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),
Part 2, Proc. Sympos. Pure Math., XXXIII, American Mathematical Society, Providence, RI, 1979,
pp. 3-26.
MathSciNet
Rad HAZU Home Page