Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 131-149.

A NOTE ON BOUNDARY COMPONENTS OF ARITHMETIC QUOTIENTS OF THE GROUP SL2 OVER AN ALGEBRAIC NUMBER FIELD

Joachim Schwermer

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
e-mail: Joachim.Schwermer@univie.ac.at


Abstract.   Given an algebraic number field k, we consider quotients XG/Γ associated with arithmetic subgroups Γ of the special linear algebraic k-group G = SL2. The group G is k-simple, of k-rank one, and split over k. The Lie group G of real points of the Q-group Resk/Q(G), obtained by restriction of scalars, is the finite direct product G = ∏vVk,∞ = SL2(R)s × SL2(C)t, where the product ranges over the set Vk,∞ of all archimedean places of k, and s (resp. t) denotes the number of real (resp. complex) places of k. The corresponding symmetric space is denoted by XG.

Using reduction theory, one can construct an open subset YΓXG/Γ such that its closure YΓ is a compact manifold with boundary ∂YΓ, and the inclusion YΓXG/Γ is a homotopy equivalence. The connected components Y[P] of the boundary ∂YΓ are in one-to-one correspondence with the finite set of Γ-conjugacy classes of minimal parabolic k-subgroups of G. We are concerned with the geometric structure of the boundary components. Each component carries the natural structure of a fibre bundle. We prove that the basis of this bundle is homeomorphic to the torus Ts+t-1 of dimension s + t - 1, has the compact fibre Tm of dimension m = s + 2t = [k : Q], and its structure group is SLm(Z). Finally, we determine the cohomology of Y[P].

2020 Mathematics Subject Classification.   11F75, 57N65, 11R52.

Key words and phrases.   Cohomology of arithmetic groups, Hilbert modular varieties.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yrvgqt3529


References:

  1. A. Borel, Introduction aux Groupes Arithmétiques, Hermann, Paris, 1969.
    MathSciNet

  2. N. Bourbaki, Algebra II, Chapters 4-7, Springer, Berlin-Heidelberg, 2003.
    MathSciNet     CrossRef

  3. A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge Univ. Press, Cambridge, 1993.
    MathSciNet

  4. G. Harder, On the cohomology of SL(2,O), in: Lie Groups and Their Representations, Proc. of the Summer School on Group Representations, Halsted Press, New York-Toronto, 1975, pp. 139-150.
    MathSciNet

  5. G. Harder, A Gauss–Bonnet formula for discrete arithmetically defined groups, Ann. Sci. École Norm. Sup. (4) 4 (1971), 409-455.
    MathSciNet

  6. F. Hirzebruch, Hilbert modular surfaces, Enseign. Math. (2) 19 (1973), 183-281.
    MathSciNet

  7. M. Kneser, Starke Approximation in algebraischen Gruppen. I, J. Reine Angew. Math. 218 (1965), 190-203.
    MathSciNet     CrossRef

  8. J. W. Milnor, Singular Points of Complex Hypersurfaces, Ann. of Math. Stud. vol. 61, Princeton University Press, Princeton, NJ, 1968.
    MathSciNet

  9. J. Schwermer, Zur ganzzahligen Kohomologie von Torusbündeln, Diplomarbeit, Inst. Mathematik, Universität Bonn, 1973.

  10. J. Schwermer, Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lecture Notes in Math. 988, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
    MathSciNet     CrossRef

  11. J. Schwermer, Reduction Theory and Arithmetic Groups, New Math. Monogr. vol. 45, Cambridge Univ. Press, Cambridge, 2023.
    MathSciNet

  12. C. L. Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1-86.
    MathSciNet     CrossRef

  13. C. L. Siegel, Lectures on Advanced Analytic Number Theory. Notes by S. Raghavan. Lect. Math., No. 23, Tata Institute of Fundamental Research, Bombay, 1965.
    MathSciNet 0262150

  14. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
    MathSciNet

  15. N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ, 1951.
    MathSciNet


Rad HAZU Home Page