Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 107-129.

JIANG’S CONJECTURE AND FIBERS OF THE BARBASCH-VOGAN DUALITY

Baiying Liu, Chi-Heng Lo and Freydoon Shahidi

Department of Mathematics, Purdue University, West Lafayette, IN, 47907, USA
e-mail: liu2053@purdue.edu
e-mail: lo93@purdue.edu
e-mail: shahidi@math.purdue.edu


Abstract.   The well-known Shahidi's conjecture says that tempered L-packets have generic members. As a natural generalization of Shahidi's conjecture to non-tempered local Arthur packets, Jiang's conjecture characterizes the relation between the structure of local Arthur parameters and the upper bound of wavefront sets of representations in local Arthur packets. One of the main ingredients in Jiang's conjecture is the Barbasch-Vogan duality. In this paper, first we briefly survey the recent progress on Jiang's conjecture, then towards the general case of Jiang's conjecture, we explicitly describe the fibers of the Barbasch-Vogan duality for classical groups.

2020 Mathematics Subject Classification.   11F70, 22E50, 11F85.

Key words and phrases.   Local Arthur packets, Local Arthur parameters, Shahidi's conjecture, enhanced Shahidi's conjecture, Jiang's conjecture.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/m16wjcwv29


References:

  1. P. Achar, An order-reversing duality map for conjugacy classes in Lusztig's canonical quotient, Transform. Groups 8 (2003), 107-145.
    MathSciNet     CrossRef

  2. J. Arthur, The endoscopic classification of representations: Orthogonal and symplectic groups, Amer. Math. Soc. Colloq. Publ. Vol. 61, American Mathematical Society, Providence, RI, 2013.
    MathSciNet     CrossRef

  3. D. Barbasch and D. Vogan, Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), 41-110.
    MathSciNet     CrossRef

  4. L. Clozel, Characters of nonconnected, reductive p-adic groups, Canad. J. Math. 39 (1987), 149-167.
    MathSciNet     CrossRef

  5. D. Collingwood and W. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Co., New York, 1993.
    MathSciNet

  6. D. Ciubotaru, L. Mason-Brown and E. Okada, Wavefront sets of unipotent representations of reductive p-adic groups I, Preprint, (2021), arXiv:2112.14354.

  7. D. Ciubotaru, L. Mason-Brown and E. Okada, Some unipotent Arthur packets for reductive p-adic groups, Int. Math. Res. Not. IMRN, to appear, arXiv:2112.14354.
    CrossRef

  8. D. Ciubotaru, L. Mason-Brown and E. Okada, Wavefront sets of unipotent representations of reductive p-adic groups II, Preprint, (2023), arXiv:2303.10713.

  9. Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, in: Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen’s Univ., Kingston, Ont., 1977), Queen’s Papers in Pure Appl. Math., No. 48, Queen's Univ., Kingston, ON, 1978, pp. 281-347.
    MathSciNet

  10. A. Hazeltine, B. Liu, C. Lo and Q. Zhang, The closure ordering conjecture on local L-parameters in local Arthur packets of classical groups, Preprint, (2022).

  11. A. Hazeltine, B. Liu, C. Lo and F. Shahidi, On the upper bound of wavefront sets of representations of p-adic groups, Preprint, (2023).

  12. C. Jantzen and B. Liu, The generic dual of p-adic split SO2n and local Langlands parameters, Israel J. Math. 204 (2014), 199-260.
    MathSciNet     CrossRef

  13. C. Jantzen and B. Liu, The generic dual of p-adic groups and Local Langlands parameters, Preprint, (2022).

  14. D. Jiang, Automorphic Integral transforms for classical groups I: Endoscopy correspondences, in: Automorphic forms and related geometry: assessing the legacy of I.I. Piatetski-Shapiro, Contemp. Math. 614, American Mathematical Society, Providence, RI, 2014, pp. 179-242.
    MathSciNet     CrossRef

  15. D. Jiang and D. Soudry, Generic representations and local Langlands reciprocity law for p-adic SO2n+1, in: Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 457-519.
    MathSciNet

  16. T. Konno, Twisted endoscopy and the generic packet conjecture, Israel J. Math. 129 (2002), 253-289.
    MathSciNet     CrossRef

  17. B. Liu, Genericity of representations of p-adic Sp2n and local Langlands parameters, Canad. J. Math. 63 (2011), 1107-1136.
    MathSciNet     CrossRef

  18. B. Liu and C. Lo, On the weak local Arthur packets conjecture of split classical groups, Preprint, (2023).

  19. B. Liu and F. Shahidi, Jiang's conjecture on the wavefront sets of local Arthur packets, Submitted, (2023).

  20. G. Lusztig, Characters of reductive groups over finite fields, in: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN - Polish Scientific Publishers, Warsaw, 1984, pp. 877-880.
    MathSciNet     CrossRef

  21. C. Mœglin and J.-L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes p-adiques, Math. Z. 196 (1987), 427-452.
    MathSciNet     CrossRef

  22. F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), 273-330.
    MathSciNet     CrossRef

  23. N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math. 946, Springer-Verlag, Berlin-New York, 1982.
    MathSciNet

  24. C.-C. Tsai, Geometric wave-front set may not be a singleton, J. Amer. Math. Soc. 37 (2024), 281-304.
    MathSciNet     CrossRef

  25. S. Varma, On descent and the generic packet conjecture, Forum Math. 29 (2017), 111-155.
    MathSciNet     CrossRef

  26. J.-L. Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque 269, 2001.
    MathSciNet

  27. J.-L. Waldspurger, Représentations de réduction unipotente pour SO(2n+1), III: exemples de fronts d'onde, Algebra Number Theory 12 (2018), 1107-1171.
    MathSciNet     CrossRef


Rad HAZU Home Page