Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 93-106.

ON THE NON-VANISHING OF SHALIKA NEWVECTORS AT THE IDENTITY

Harald Grobner and Nadir Matringe

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
e-mail: harald.grobner@univie.ac.at

IMJ-PRG, Université Paris-Cité, 8 Pl. Aurélie Nemours, 75013 Paris, France
e-mail: nadir.matringe@imj-prg.fr


Abstract.   Let π be an irreducible admissible unitary ψ-generic representation of the non-archimedean general linear group GL2n(F), which admits an (η, psi;)-Shalika model Sψη(π). In this paper, we show the nonvanishing of all non-zero Shalika newvectors SoSψη(π) at the identity matrix g = idGL2n(F), if η is unramified. This complements the analogous result for Whittaker newvectors, which can be read off the formulae established independently by Miyauchi in [Miy14] and the second named author in [Mat13].

2020 Mathematics Subject Classification.   11F66, 11F70, 11F85, 22D10.

Key words and phrases.   Shalika models, Whittaker models, non-vanishing, local fields.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ydkx2cv259


References:

  1. U. K. Anandavardhanan and N. Matringe, Test vectors for local periods, Forum Math. 29 (2017), 1245-1260.
    MathSciNet     CrossRef

  2. A. Ash and D. Ginzburg, p-adic L-functions for GL(2n), Invent. Math. 116 (1994), 27-73.
    MathSciNet     CrossRef

  3. J. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472.
    MathSciNet

  4. J. N. Bernstein and A. V. Zelevinsky, Representations of the group GL(n, F) where F is a non-archimedean local field, Russian Math. Surveys 31:3 (1976), 1-68.
    MathSciNet

  5. J. N. Bernstein, P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-Archimedean case), in: Lie group representations, II (College Park, Md., 1982/1983), Springer-Verlag, Berlin, 1984, pp. 50-102.
    MathSciNet     CrossRef

  6. F. Chen and B. Sun, Uniqueness of twisted linear periods and twisted Shalika periods, Sci. China Math. 63 (2020), 1-22.
    MathSciNet     CrossRef

  7. H. Grobner and A. Raghuram, On the arithmetic of Shalika models and the critical values of L-functions for GL2n (with an appendix by Wee Teck Gan), Amer. J. Math. 136 (2014), 675-728.
    MathSciNet     CrossRef

  8. H. Jacquet, A correction to "Conducteur des représentations du groupe linéair", Pacific J. Math. 260 (2012), 515-525.
    MathSciNet     CrossRef

  9. H. Jacquet, I. Piatetski-Shapiro and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), 199-214.
    MathSciNet     CrossRef

  10. H. Jacquet and S. Rallis, Uniqueness of linear periods, Compos. Math. 102 (1996), 65-123.
    MathSciNet

  11. H. Jacquet and J. Shalika, Exterior square L-functions, in: Automorphic forms, Shimura varieties, and L-functions, Vol. II, Perspect. Math., vol. 11, eds. L. Clozel and J. S. Milne, (Ann Arbor, MI, 1988) Academic Press, Boston, MA, 1990, pp. 143-226.
    MathSciNet

  12. Y. Jo, Factorization of the local exterior square L-function of GL(m), Manuscripta Math. 162 (2020), 493-536.
    MathSciNet     CrossRef

  13. Y. Jo, The local period integrals and essential vectors, Math. Nachr. 296 (2023), 339-367.
    MathSciNet

  14. N. Matringe, Derivatives and asymptotics of Whittaker functions, Represent. Theory 15 (2011), 646-669.
    MathSciNet     CrossRef

  15. N. Matringe, Essential Whittaker functions for GL(n), Doc. Math. 18 (2013), 1191-1214.
    MathSciNet

  16. N. Matringe, Linear and Shalika local periods for the mirabolic group, and some consequences, J. Number Theory 138 (2014), 1-19.
    MathSciNet     CrossRef

  17. N. Matringe, On the local Bump-Friedberg L-function, J. Reine Angew. Math. 709 (2015), 119-170.
    MathSciNet     CrossRef

  18. M. Miyauchi, Whittaker functions associated to newforms for GL(n) over p-adic fields, J. Math. Soc. Japan 66 (2014), 17-24.
    MathSciNet     CrossRef


Rad HAZU Home Page