Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 93-106.
ON THE NON-VANISHING OF SHALIKA NEWVECTORS AT THE IDENTITY
Harald Grobner and Nadir Matringe
Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
e-mail: harald.grobner@univie.ac.at
IMJ-PRG, Université Paris-Cité, 8 Pl. Aurélie Nemours, 75013 Paris, France
e-mail: nadir.matringe@imj-prg.fr
Abstract. Let π be an irreducible admissible unitary ψ-generic representation
of the non-archimedean general linear group GL2n(F), which
admits an (η, psi;)-Shalika model Sψη(π).
In this paper, we show the nonvanishing
of all non-zero Shalika newvectors So ∈ Sψη(π)
at the identity matrix g = id ∈ GL2n(F),
if η is unramified. This complements the analogous
result for Whittaker newvectors, which can be read off the formulae
established independently by Miyauchi in [Miy14] and the second named
author in [Mat13].
2020 Mathematics Subject Classification.
11F66, 11F70, 11F85, 22D10.
Key words and phrases. Shalika models, Whittaker models, non-vanishing, local fields.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ydkx2cv259
References:
- U. K. Anandavardhanan and N. Matringe, Test vectors for local periods, Forum
Math. 29 (2017), 1245-1260.
MathSciNet
CrossRef
- A. Ash and D. Ginzburg, p-adic L-functions for GL(2n), Invent. Math. 116
(1994), 27-73.
MathSciNet
CrossRef
- J. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic
groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472.
MathSciNet
- J. N. Bernstein and A. V. Zelevinsky, Representations of the group GL(n, F)
where F is a non-archimedean local field, Russian Math. Surveys 31:3 (1976), 1-68.
MathSciNet
- J. N. Bernstein, P-invariant distributions on GL(N) and the classification of unitary
representations of GL(N) (non-Archimedean case), in: Lie group representations,
II (College Park, Md., 1982/1983), Springer-Verlag, Berlin, 1984, pp. 50-102.
MathSciNet
CrossRef
- F. Chen and B. Sun, Uniqueness of twisted linear periods and twisted Shalika
periods, Sci. China Math. 63 (2020), 1-22.
MathSciNet
CrossRef
- H. Grobner and A. Raghuram, On the arithmetic of Shalika models and the
critical values of L-functions for GL2n (with an appendix by Wee Teck Gan), Amer.
J. Math. 136 (2014), 675-728.
MathSciNet
CrossRef
- H. Jacquet, A correction to "Conducteur des représentations du groupe linéair",
Pacific J. Math. 260 (2012), 515-525.
MathSciNet
CrossRef
- H. Jacquet, I. Piatetski-Shapiro and J. Shalika, Conducteur des représentations
du groupe linéaire, Math. Ann. 256 (1981), 199-214.
MathSciNet
CrossRef
- H. Jacquet and S. Rallis, Uniqueness of linear periods, Compos. Math. 102
(1996), 65-123.
MathSciNet
- H. Jacquet and J. Shalika, Exterior square L-functions, in: Automorphic
forms, Shimura varieties, and L-functions, Vol. II, Perspect. Math., vol. 11, eds. L.
Clozel and J. S. Milne, (Ann Arbor, MI, 1988) Academic Press, Boston, MA, 1990,
pp. 143-226.
MathSciNet
- Y. Jo, Factorization of the local exterior square L-function of GL(m), Manuscripta
Math. 162 (2020), 493-536.
MathSciNet
CrossRef
- Y. Jo, The local period integrals and essential vectors, Math. Nachr. 296 (2023),
339-367.
MathSciNet
- N. Matringe, Derivatives and asymptotics of Whittaker functions, Represent. Theory
15 (2011), 646-669.
MathSciNet
CrossRef
- N. Matringe, Essential Whittaker functions for GL(n), Doc. Math. 18
(2013), 1191-1214.
MathSciNet
- N. Matringe, Linear and Shalika local periods for the mirabolic group, and some
consequences, J. Number Theory 138 (2014), 1-19.
MathSciNet
CrossRef
- N. Matringe, On the local Bump-Friedberg L-function, J. Reine Angew. Math. 709
(2015), 119-170.
MathSciNet
CrossRef
- M. Miyauchi, Whittaker functions associated to newforms for GL(n) over p-adic
fields, J. Math. Soc. Japan 66 (2014), 17-24.
MathSciNet
CrossRef
Rad HAZU Home Page