Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 71-91.

ENDOSCOPIC TRANSFER AND AUTOMORPHIC L-FUNCTIONS: THE CASE OF THE GENERAL SPIN GROUP AND THE TWISTED SYMMETRIC AND EXTERIOR SQUARE L-FUNCTIONS

Neven Grbac

Juraj Dobrila University of Pula, Zagrebačka 30, HR-52100 Pula, Croatia
e-mail: neven.grbac@unipu.hr


Abstract.   The endoscopic classification and the Langlands spectral theory are two approaches to the discrete spectrum of the group of adèlic points of a reductive linear algebraic group defined over a number field. The two points of view on the same object yield interesting consequences. In this paper, the case of the general spin group is considered. In that case, it is shown how the comparison of the two approaches implies that the twisted symmetric and exterior square complete automorphic L-functions associated to a cuspidal automorphic representation of the general linear group are holomorphic in the critical strip.

2020 Mathematics Subject Classification.   11F66, 11F70, 11F72, 22E55.

Key words and phrases.   Twisted symmetric and exterior square automorphic L-function, general spin group, automorphic representation, endoscopic classification, spectral decomposition, Langlands-Shahidi method.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/m8vqrt3n19


References:

  1. J. Arthur, Unipotent automorphic representations: global motivation, in: Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 1-75.
    MathSciNet

  2. J. Arthur, Automorphic representations of GSp(4), in: Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 65-81.
    MathSciNet

  3. J. Arthur, An introduction to the trace formula, in: Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 1-263.
    MathSciNet

  4. J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013.
    MathSciNet     CrossRef

  5. M. Asgari, Local L-functions for split spinor groups, Canad. J. Math. 54 (2002), 673-693.
    MathSciNet     CrossRef

  6. M. Asgari and F. Shahidi, Generic transfer for general spin groups, Duke Math. J. 132 (2006), 137-190.
    MathSciNet     CrossRef

  7. D. D. Belt, On the holomorphy of exterior-square L-functions, Thesis (Ph.D.) - Purdue University, ProQuest LLC, Ann Arbor, MI, 2012.
    MathSciNet

  8. C. Blondel, Covers and propagation in symplectic groups, in: Functional analysis IX, Various Publ. Ser. (Aarhus), vol. 48, Univ. Aarhus, Aarhus, 2007, pp. 16-31.
    MathSciNet

  9. A. Borel, Regularization theorems in Lie algebra cohomology. Applications, Duke Math. J. 50 (1983), 605-623.
    MathSciNet

  10. A. Borel and H. Jacquet, Automorphic forms and automorphic representations, in: Automorphic forms, representations and L-functions, Proc. Sympos. Pure Math., XXXIII, Part 1, Amer. Math. Soc., Providence, R.I., 1979, pp. 189-202.
    MathSciNet

  11. A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, second ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000.
    MathSciNet     CrossRef

  12. J. Franke, Harmonic analysis in weighted L2-spaces, Ann. Sci. École Norm. Sup. (4) 31 (1998), 181-279.
    MathSciNet     CrossRef

  13. N. Grbac, On the residual spectrum of split classical groups supported in the Siegel maximal parabolic subgroup, Monatsh. Math. 163 (2011), 301-314.
    MathSciNet     CrossRef

  14. N. Grbac, Analytic properties of automorphic L-functions and Arthur classification, in: Automorphic Forms and Related Zeta Functions, RIMS Kokyuroku, vol. 1934, Research Institute for Mathematical Sciences, Kyoto, 2015, pp. 26-39.

  15. N. Grbac, Eisenstein cohomology and automorphic L-functions, in: Cohomology of arithmetic groups, Springer Proc. Math. Stat., vol. 245, Springer, Cham, 2018, pp. 35-50.
    MathSciNet     CrossRef

  16. N. Grbac and H. Grobner, The residual Eisenstein cohomology of Sp4 over a totally real number field, Trans. Amer. Math. Soc. 365 (2013), 5199-5235.
    MathSciNet     CrossRef

  17. N. Grbac and J. Schwermer, On Eisenstein series and the cohomology of arithmetic groups, C. R. Math. Acad. Sci. Paris 348 (2010), 597-600.
    MathSciNet     CrossRef

  18. N. Grbac and J. Schwermer, On residual cohomology classes attached to relative rank one Eisenstein series for the symplectic group, Int. Math. Res. Not. IMRN 2011 (2011), 1654-1705.
    MathSciNet     CrossRef

  19. N. Grbac and J. Schwermer, Eisenstein series, cohomology of arithmetic groups, and automorphic L-functions at half integral arguments, Forum Math. 26 (2014), 1635-1662.
    MathSciNet     CrossRef

  20. N. Grbac and J. Schwermer, A construction of residues of Eisenstein series and related square-integrable classes in the cohomology of arithmetic groups of low k-rank, Forum Math. 31 (2019), 1225-1263.
    MathSciNet     CrossRef

  21. N. Grbac and J. Schwermer, Eisenstein series for rank one unitary groups and some cohomological applications, Adv. Math. 376 (2021), Paper No. 107438, 48 pages.
    MathSciNet     CrossRef

  22. N. Grbac and F. Shahidi, Endoscopic transfer for unitary groups and holomorphy of Asai L-functions, Pacific J. Math. 276 (2015), 185-211.
    MathSciNet     CrossRef

  23. J. Hundley and E. Sayag, Descent construction for GSpin groups, Mem. Amer. Math. Soc. 243 (2016), no. 1148, v+124.
    MathSciNet     CrossRef

  24. H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464.
    MathSciNet     CrossRef

  25. H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), 499-558.
    MathSciNet     CrossRef

  26. H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), 777-815.
    MathSciNet     CrossRef

  27. E. Kaplan and S. Yamana, Twisted symmetric square L-functions for GLn and invariant trilinear forms, Math. Z. 285 (2017), 739-793.
    MathSciNet     CrossRef

  28. H. H. Kim, Automorphic L-functions, in: Lectures on automorphic L-functions, Fields Inst. Monogr., vol. 20, Amer. Math. Soc., Providence, RI, 2004, pp. 97-201.
    MathSciNet

  29. Y. Kim, Strongly positive representations of even GSpin groups, Pacific J. Math. 280 (2016), 69-88.
    MathSciNet     CrossRef

  30. Y. Kim, Langlands-Shahidi L-functions for GSpin groups and the generic Arthur packet conjecture, Trans. Amer. Math. Soc. 374 (2021), 2559-2580.
    MathSciNet     CrossRef

  31. R. P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976.
    MathSciNet

  32. I. Matić, Levi subgroups of p-adic Spin(2n + 1), Math. Commun. 14 (2009), 223-233.
    MathSciNet

  33. C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. (4) 22 (1989), 605-674.
    MathSciNet

  34. C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995.
    MathSciNet     CrossRef

  35. C. P. Mok, Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235 (2015), no. 1108, vi+248.
    MathSciNet     CrossRef

  36. P. J. Sally, Jr. and M. Tadić, Induced representations and classifications for GSp(2, F) and Sp(2, F), Mém. Soc. Math. France (N.S.) (1993), no. 52, 75-133.
    MathSciNet

  37. F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math. (2) 127 (1988), 547-584.
    MathSciNet     CrossRef

  38. F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), 273-330.
    MathSciNet     CrossRef

  39. F. Shahidi, On non-vanishing of twisted symmetric and exterior square L-functions for GL(n), Pacific J. Math. (1997), Special Issue, Olga Taussky-Todd: in memoriam, 311-322.
    MathSciNet     CrossRef

  40. F. Shahidi, Eisenstein series and automorphic L-functions, American Mathematical Society Colloquium Publications, vol. 58, American Mathematical Society, Providence, RI, 2010.
    MathSciNet     CrossRef

  41. M. Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), 335-382.
    MathSciNet

  42. M. Tadić, On Jacquet modules of induced representations of p-adic symplectic groups, in: Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 305-314.
    MathSciNet

  43. M. Tadić, Representations of classical p-adic groups, in: Representations of Lie groups and quantum groups (Trento, 1993), Pitman Res. Notes Math. Ser., vol. 311, Longman Sci. Tech., Harlow, 1994, pp. 129-204.
    MathSciNet

  44. M. Tadić, Representations of p-adic symplectic groups, Compositio Math. 90 (1994), 123-181.
    MathSciNet

  45. M. Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra 177 (1995), 1-33.
    MathSciNet     CrossRef

  46. M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29-91.
    MathSciNet     CrossRef

  47. S. Takeda, The twisted symmetric square L-function of GL(r), Duke Math. J. 163 (2014), 175-266.
    MathSciNet     CrossRef

  48. S. Takeda, On a certain metaplectic Eisenstein series and the twisted symmetric square L-function, Math. Z. 281 (2015), 103-157.
    MathSciNet     CrossRef

  49. D. A. Vogan, Jr., Gel'fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), 75-98.
    MathSciNet     CrossRef

  50. D. A. Vogan, Jr., The unitary dual of GL(n) over an Archimedean field, Invent. Math. 83 (1986), 449-505.
    MathSciNet     CrossRef

  51. B. Xu, Endoscopic Classification of Representations of GSp(2n) and GSO(2n), Thesis (Ph.D.) - University of Toronto (Canada), ProQuest LLC, Ann Arbor, MI, 2014.
    MathSciNet

  52. A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n) Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
    MathSciNet

  53. Y. Zhang, The holomorphy and nonvanishing of normalized local intertwining operators, Pacific J. Math. 180 (1997), 385-398.
    MathSciNet     CrossRef


Rad HAZU Home Page