Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 71-91.
ENDOSCOPIC TRANSFER AND AUTOMORPHIC L-FUNCTIONS: THE CASE OF THE GENERAL SPIN
GROUP AND THE TWISTED SYMMETRIC AND EXTERIOR SQUARE L-FUNCTIONS
Neven Grbac
Juraj Dobrila University of Pula, Zagrebačka 30, HR-52100 Pula, Croatia
e-mail: neven.grbac@unipu.hr
Abstract. The endoscopic classification and the Langlands spectral
theory are two approaches to the discrete spectrum of the group of adèlic
points of a reductive linear algebraic group defined over a number field. The
two points of view on the same object yield interesting consequences. In
this paper, the case of the general spin group is considered. In that case,
it is shown how the comparison of the two approaches implies that the
twisted symmetric and exterior square complete automorphic L-functions
associated to a cuspidal automorphic representation of the general linear
group are holomorphic in the critical strip.
2020 Mathematics Subject Classification.
11F66, 11F70, 11F72, 22E55.
Key words and phrases. Twisted symmetric and exterior square automorphic L-function,
general spin group, automorphic representation, endoscopic classification, spectral decomposition, Langlands-Shahidi method.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/m8vqrt3n19
References:
- J. Arthur, Unipotent automorphic representations: global motivation, in: Automorphic
forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect.
Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 1-75.
MathSciNet
- J. Arthur, Automorphic representations of GSp(4), in: Contributions to automorphic
forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004,
pp. 65-81.
MathSciNet
- J. Arthur, An introduction to the trace formula, in: Harmonic analysis, the trace formula,
and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence,
RI, 2005, pp. 1-263.
MathSciNet
- J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups,
American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence,
RI, 2013.
MathSciNet
CrossRef
- M. Asgari, Local L-functions for split spinor groups, Canad. J. Math. 54 (2002), 673-693.
MathSciNet
CrossRef
- M. Asgari and F. Shahidi, Generic transfer for general spin groups, Duke Math. J.
132 (2006), 137-190.
MathSciNet
CrossRef
- D. D. Belt, On the holomorphy of exterior-square L-functions, Thesis (Ph.D.) - Purdue University, ProQuest LLC, Ann
Arbor, MI, 2012.
MathSciNet
- C. Blondel, Covers and propagation in symplectic groups, in: Functional analysis IX,
Various Publ. Ser. (Aarhus), vol. 48, Univ. Aarhus, Aarhus, 2007, pp. 16-31.
MathSciNet
- A. Borel, Regularization theorems in Lie algebra cohomology. Applications, Duke Math.
J. 50 (1983), 605-623.
MathSciNet
- A. Borel and H. Jacquet, Automorphic forms and automorphic representations, in: Automorphic
forms, representations and L-functions, Proc. Sympos. Pure Math., XXXIII,
Part 1, Amer. Math. Soc., Providence, R.I., 1979, pp. 189-202.
MathSciNet
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations
of reductive groups, second ed., Mathematical Surveys and Monographs, vol. 67,
American Mathematical Society, Providence, RI, 2000.
MathSciNet
CrossRef
- J. Franke, Harmonic analysis in weighted L2-spaces, Ann. Sci. École Norm. Sup. (4)
31 (1998), 181-279.
MathSciNet
CrossRef
- N. Grbac, On the residual spectrum of split classical groups supported in the Siegel
maximal parabolic subgroup, Monatsh. Math. 163 (2011), 301-314.
MathSciNet
CrossRef
- N. Grbac, Analytic properties of automorphic L-functions and Arthur classification,
in: Automorphic Forms and Related Zeta Functions, RIMS Kokyuroku, vol. 1934,
Research Institute for Mathematical Sciences, Kyoto, 2015, pp. 26-39.
- N. Grbac, Eisenstein cohomology and automorphic L-functions, in: Cohomology of
arithmetic groups, Springer Proc. Math. Stat., vol. 245, Springer, Cham, 2018, pp. 35-50.
MathSciNet
CrossRef
- N. Grbac and H. Grobner, The residual Eisenstein cohomology of Sp4 over a totally
real number field, Trans. Amer. Math. Soc. 365 (2013), 5199-5235.
MathSciNet
CrossRef
- N. Grbac and J. Schwermer, On Eisenstein series and the cohomology of arithmetic
groups, C. R. Math. Acad. Sci. Paris 348 (2010), 597-600.
MathSciNet
CrossRef
- N. Grbac and J. Schwermer, On residual cohomology classes attached to relative rank
one Eisenstein series for the symplectic group, Int. Math. Res. Not. IMRN 2011 (2011),
1654-1705.
MathSciNet
CrossRef
- N. Grbac and J. Schwermer, Eisenstein series, cohomology of arithmetic groups, and
automorphic L-functions at half integral arguments, Forum Math. 26 (2014), 1635-1662.
MathSciNet
CrossRef
- N. Grbac and J. Schwermer, A construction of residues of Eisenstein series and related
square-integrable classes in the cohomology of arithmetic groups of low k-rank, Forum
Math. 31 (2019), 1225-1263.
MathSciNet
CrossRef
- N. Grbac and J. Schwermer, Eisenstein series for rank one unitary groups and some
cohomological applications, Adv. Math. 376 (2021), Paper No. 107438, 48 pages.
MathSciNet
CrossRef
- N. Grbac and F. Shahidi, Endoscopic transfer for unitary groups and holomorphy of
Asai L-functions, Pacific J. Math. 276 (2015), 185-211.
MathSciNet
CrossRef
- J. Hundley and E. Sayag, Descent construction for GSpin groups, Mem. Amer. Math.
Soc. 243 (2016), no. 1148, v+124.
MathSciNet
CrossRef
- H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin-Selberg convolutions,
Amer. J. Math. 105 (1983), 367-464.
MathSciNet
CrossRef
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic
representations. I, Amer. J. Math. 103 (1981), 499-558.
MathSciNet
CrossRef
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic
forms. II, Amer. J. Math. 103 (1981), 777-815.
MathSciNet
CrossRef
- E. Kaplan and S. Yamana, Twisted symmetric square L-functions for GLn and invariant
trilinear forms, Math. Z. 285 (2017), 739-793.
MathSciNet
CrossRef
- H. H. Kim, Automorphic L-functions, in: Lectures on automorphic L-functions, Fields
Inst. Monogr., vol. 20, Amer. Math. Soc., Providence, RI, 2004, pp. 97-201.
MathSciNet
- Y. Kim, Strongly positive representations of even GSpin groups, Pacific J. Math. 280
(2016), 69-88.
MathSciNet
CrossRef
- Y. Kim, Langlands-Shahidi L-functions for GSpin groups and the generic Arthur
packet conjecture, Trans. Amer. Math. Soc. 374 (2021), 2559-2580.
MathSciNet
CrossRef
- R. P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture
Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976.
MathSciNet
- I. Matić, Levi subgroups of p-adic Spin(2n + 1), Math. Commun. 14 (2009), 223-233.
MathSciNet
- C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. École Norm.
Sup. (4) 22 (1989), 605-674.
MathSciNet
- C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge
Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995.
MathSciNet
CrossRef
- C. P. Mok, Endoscopic classification of representations of quasi-split unitary
groups, Mem. Amer. Math. Soc. 235 (2015), no. 1108, vi+248.
MathSciNet
CrossRef
- P. J. Sally, Jr. and M. Tadić, Induced representations and classifications for GSp(2, F)
and Sp(2, F), Mém. Soc. Math. France (N.S.) (1993), no. 52, 75-133.
MathSciNet
- F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions,
Ann. of Math. (2) 127 (1988), 547-584.
MathSciNet
CrossRef
- F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary
series for p-adic groups, Ann. of Math. (2) 132 (1990), 273-330.
MathSciNet
CrossRef
- F. Shahidi, On non-vanishing of twisted symmetric and exterior square L-functions
for GL(n), Pacific J. Math. (1997), Special Issue, Olga Taussky-Todd: in memoriam,
311-322.
MathSciNet
CrossRef
- F. Shahidi, Eisenstein series and automorphic L-functions, American Mathematical
Society Colloquium Publications, vol. 58, American Mathematical Society, Providence,
RI, 2010.
MathSciNet
CrossRef
- M. Tadić, Classification of unitary representations in irreducible representations of
general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19
(1986), 335-382.
MathSciNet
- M. Tadić, On Jacquet modules of induced representations of p-adic symplectic groups,
in: Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., vol.
101, Birkhäuser Boston, Boston, MA, 1991, pp. 305-314.
MathSciNet
- M. Tadić, Representations of classical p-adic groups, in: Representations of Lie groups
and quantum groups (Trento, 1993), Pitman Res. Notes Math. Ser., vol. 311, Longman
Sci. Tech., Harlow, 1994, pp. 129-204.
MathSciNet
- M. Tadić, Representations of p-adic symplectic groups, Compositio Math. 90 (1994),
123-181.
MathSciNet
- M. Tadić, Structure arising from induction and Jacquet modules of representations of
classical p-adic groups, J. Algebra 177 (1995), 1-33.
MathSciNet
CrossRef
- M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29-91.
MathSciNet
CrossRef
- S. Takeda, The twisted symmetric square L-function of GL(r), Duke Math. J. 163
(2014), 175-266.
MathSciNet
CrossRef
- S. Takeda, On a certain metaplectic Eisenstein series and the twisted symmetric square
L-function, Math. Z. 281 (2015), 103-157.
MathSciNet
CrossRef
- D. A. Vogan, Jr., Gel'fand-Kirillov dimension for Harish-Chandra modules, Invent.
Math. 48 (1978), 75-98.
MathSciNet
CrossRef
- D. A. Vogan, Jr., The unitary dual of GL(n) over an Archimedean field, Invent. Math.
83 (1986), 449-505.
MathSciNet
CrossRef
- B. Xu, Endoscopic Classification of Representations of GSp(2n) and GSO(2n),
Thesis (Ph.D.) - University of Toronto (Canada), ProQuest LLC, Ann Arbor, MI, 2014.
MathSciNet
- A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible
representations of GL(n) Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
MathSciNet
- Y. Zhang, The holomorphy and nonvanishing of normalized local intertwining operators,
Pacific J. Math. 180 (1997), 385-398.
MathSciNet
CrossRef
Rad HAZU Home Page