Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 57-70.
ON HIGHER ORDER WEIERSTRASS POINTS ON X0(N)
Damir Mikoč and Goran Muić
Department of Teacher Education Studies in Gospić, University of Zadar, dr. Ante Starčevića 12, 53000 Gospić, Croatia 
e-mail: dmikoc@unizd.hr
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia 
e-mail: gmuic@math.hr
Abstract.   Let Γ be the Fuchsian group of the first kind. For an
even integer m ≥ 4, we describe the space Hm/2(ℜΓ) 
of m/2–holomorphic
differentials in terms of a subspace SmH(Γ) of the space of (holomorphic)
cuspidal modular forms Sm(Γ). This generalizes classical isomorphism
S2(Γ) ≃ H1(ℜΓ). We study the properties of 
SmH(Γ). As an application,
we describe the algorithm implemented in SAGE for testing if a cusp at ∞ 
for non–hyperelliptic X0(N) is a m/2-Weierstrass point.
2020 Mathematics Subject Classification.   
11F11.
Key words and phrases.   Wronskians, holomorphic differentials, cuspidal modular forms.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/90836c2xgy
References:
-  R. Dicks, A higher weight analogue of Ogg's theorem on Weierstrass points, 
Int. J. Number Theory 17 (2021), 1155--1162. 
MathSciNet     
CrossRef
 -  H. M. Farkas and I. Kra, Riemann surfaces, Second edition, Grad. Texts in Math. 71, 
Springer-Verlag, New York, 1992.
MathSciNet     
CrossRef
 -  I. Kodrnja, On a simple model of X0(N), Monatsh. Math. 186 (2018), 653-661.
MathSciNet     
CrossRef
 -  T. Miyake, Modular forms, Springer-Verlag, Berlin, 2006.
MathSciNet 
 -  R. Miranda, Algebraic Curves and Riemann Surfaces, Grad. Stud. Math. 5, 
American Mathematical Society, Providence, RI, 1995.
MathSciNet     
CrossRef
 -  G. Muić, Modular curves and bases for the spaces of cuspidal modular forms, 
Ramanujan J. 27 (2012), 181-208.
MathSciNet     
CrossRef
 -  G. Muić, On embeddings of curves in projective spaces, Monatsh. Math. 173 (2014), 239-256.
MathSciNet     
CrossRef
 -  G. Muić, On degrees and birationality of the maps X0(N) → P2 constructed via
modular forms, Monatsh. Math. 180 (2016), 607-629.
MathSciNet     
CrossRef
 -  G. Muić and I. Kodrnja, On primitive elements of algebraic function fields and models of
X0(N), Ramanujan J. 55 (2021), 393-420.
MathSciNet     
CrossRef
 -  G. Muić and D. Mikoč, Birational maps of X(1) into P2, 
Glas. Mat. Ser. III 48 (2013), 301-312.
MathSciNet     
CrossRef
 -  G. Muić and D. Mikoč, On m-fold holomorphic differentials and modular forms, manuscript
(https://arxiv.org/abs/2101.00601).
 -  A. Neeman, The distribution of Weierstrass points on a compact Riemann surface,
Ann. of Math. (2) 120 (1984), 317-328.
MathSciNet     
CrossRef
 -  A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462.
MathSciNet 
 -  B. A. Olsen, On higher order Weierstrass points, Ann. of Math. (2) 95 (1972), 357-364.
MathSciNet     
CrossRef
 -  K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and
q-Series, Conference Board of the Mathematical Sciences 102, American Mathematical
Society, Providence, RI, 2004.
MathSciNet 
 -  H. Petersson, Einheitliche Begründung der Vollständigkeitssätze für die Poincaréschen
Reihen von reeller Dimension bei beliebigen Grenzkreisgruppen von erster Art, Abh.
Math. Sem. Hansischen Univ. 14 (1941), 22-60.
MathSciNet     
CrossRef
 -  H. Petersson, Über Weierstrasspunkte und die expliziten Darstellungen der automorphen
Formen von reeller Dimension, Math. Z. 52 (1949), 32-59.
MathSciNet     
CrossRef
 -  D. Rohrlich, Weierstrass points and modular forms, Illinois J. Math 29 (1985), 134-141.
MathSciNet 
 -  Sage Mathematics Software (Version 8.8), The Sage Developers, 2019,
https://www.sagemath.org.
 
Rad HAZU Home Page