Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 57-70.

ON HIGHER ORDER WEIERSTRASS POINTS ON X0(N)

Damir Mikoč and Goran Muić

Department of Teacher Education Studies in Gospić, University of Zadar, dr. Ante Starčevića 12, 53000 Gospić, Croatia
e-mail: dmikoc@unizd.hr

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: gmuic@math.hr


Abstract.   Let Γ be the Fuchsian group of the first kind. For an even integer m ≥ 4, we describe the space Hm/2(ℜΓ) of m/2–holomorphic differentials in terms of a subspace SmH(Γ) of the space of (holomorphic) cuspidal modular forms Sm(Γ). This generalizes classical isomorphism S2(Γ) ≃ H1(ℜΓ). We study the properties of SmH(Γ). As an application, we describe the algorithm implemented in SAGE for testing if a cusp at ∞ for non–hyperelliptic X0(N) is a m/2-Weierstrass point.

2020 Mathematics Subject Classification.   11F11.

Key words and phrases.   Wronskians, holomorphic differentials, cuspidal modular forms.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/90836c2xgy


References:

  1. R. Dicks, A higher weight analogue of Ogg's theorem on Weierstrass points, Int. J. Number Theory 17 (2021), 1155--1162.
    MathSciNet     CrossRef

  2. H. M. Farkas and I. Kra, Riemann surfaces, Second edition, Grad. Texts in Math. 71, Springer-Verlag, New York, 1992.
    MathSciNet     CrossRef

  3. I. Kodrnja, On a simple model of X0(N), Monatsh. Math. 186 (2018), 653-661.
    MathSciNet     CrossRef

  4. T. Miyake, Modular forms, Springer-Verlag, Berlin, 2006.
    MathSciNet

  5. R. Miranda, Algebraic Curves and Riemann Surfaces, Grad. Stud. Math. 5, American Mathematical Society, Providence, RI, 1995.
    MathSciNet     CrossRef

  6. G. Muić, Modular curves and bases for the spaces of cuspidal modular forms, Ramanujan J. 27 (2012), 181-208.
    MathSciNet     CrossRef

  7. G. Muić, On embeddings of curves in projective spaces, Monatsh. Math. 173 (2014), 239-256.
    MathSciNet     CrossRef

  8. G. Muić, On degrees and birationality of the maps X0(N) → P2 constructed via modular forms, Monatsh. Math. 180 (2016), 607-629.
    MathSciNet     CrossRef

  9. G. Muić and I. Kodrnja, On primitive elements of algebraic function fields and models of X0(N), Ramanujan J. 55 (2021), 393-420.
    MathSciNet     CrossRef

  10. G. Muić and D. Mikoč, Birational maps of X(1) into P2, Glas. Mat. Ser. III 48 (2013), 301-312.
    MathSciNet     CrossRef

  11. G. Muić and D. Mikoč, On m-fold holomorphic differentials and modular forms, manuscript (https://arxiv.org/abs/2101.00601).

  12. A. Neeman, The distribution of Weierstrass points on a compact Riemann surface, Ann. of Math. (2) 120 (1984), 317-328.
    MathSciNet     CrossRef

  13. A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462.
    MathSciNet

  14. B. A. Olsen, On higher order Weierstrass points, Ann. of Math. (2) 95 (1972), 357-364.
    MathSciNet     CrossRef

  15. K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, Conference Board of the Mathematical Sciences 102, American Mathematical Society, Providence, RI, 2004.
    MathSciNet

  16. H. Petersson, Einheitliche Begründung der Vollständigkeitssätze für die Poincaréschen Reihen von reeller Dimension bei beliebigen Grenzkreisgruppen von erster Art, Abh. Math. Sem. Hansischen Univ. 14 (1941), 22-60.
    MathSciNet     CrossRef

  17. H. Petersson, Über Weierstrasspunkte und die expliziten Darstellungen der automorphen Formen von reeller Dimension, Math. Z. 52 (1949), 32-59.
    MathSciNet     CrossRef

  18. D. Rohrlich, Weierstrass points and modular forms, Illinois J. Math 29 (1985), 134-141.
    MathSciNet

  19. Sage Mathematics Software (Version 8.8), The Sage Developers, 2019, https://www.sagemath.org.


Rad HAZU Home Page