Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 49-56.
NEW PARTITION IDENTITIES FOR ODD W ODD
Mirko Primc
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: primc@math.hr
Abstract. In this note we conjecture Rogers-Ramanujan type colored
partition identities for an array Nwodd with odd number of rows w such that
the first and the last row consist of even positive integers. In a strange
way this is different from the partition identities for the array Nw with
odd number of rows w such that the first and the last row consist of odd
positive integers - the partition identities conjectured by S. Capparelli, A.
Meurman, A. Primc and the author and related to standard representations
of the affine Lie algebra of type Cl(1) for w = 2l + 1.
The conjecture is based on numerical evidence.
2020 Mathematics Subject Classification.
05A19, 17B67.
Key words and phrases. Colored partitions, Rogers-Ramanujan type identities.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/9e31lhzl8m
References:
- G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications,
Vol. 2, Addison-Wesley, 1976.
MathSciNet
- S. Capparelli, A. Meurman, A. Primc and M. Primc, New partition identities from
Cl(1)-modules, Glas. Mat. Ser. III 57 (2022), 161-184.
MathSciNet
CrossRef
- V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed, Cambridge Univ. Press, Cambridge,
1990.
MathSciNet
CrossRef
- J. Lepowsky and R. L. Wilson, The structure of standard modules, I: Universal algebras
and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), 199-290; II: The case
A1(1), principal gradation, Invent. Math. 79 (1985), 417-442.
MathSciNet
CrossRef
MathSciNet
CrossRef
Rad HAZU Home Page