Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 49-56.

NEW PARTITION IDENTITIES FOR ODD W ODD

Mirko Primc

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: primc@math.hr


Abstract.   In this note we conjecture Rogers-Ramanujan type colored partition identities for an array Nwodd with odd number of rows w such that the first and the last row consist of even positive integers. In a strange way this is different from the partition identities for the array Nw with odd number of rows w such that the first and the last row consist of odd positive integers - the partition identities conjectured by S. Capparelli, A. Meurman, A. Primc and the author and related to standard representations of the affine Lie algebra of type Cl(1) for w = 2l + 1. The conjecture is based on numerical evidence.

2020 Mathematics Subject Classification.   05A19, 17B67.

Key words and phrases.   Colored partitions, Rogers-Ramanujan type identities.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/9e31lhzl8m


References:

  1. G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2, Addison-Wesley, 1976.
    MathSciNet

  2. S. Capparelli, A. Meurman, A. Primc and M. Primc, New partition identities from Cl(1)-modules, Glas. Mat. Ser. III 57 (2022), 161-184.
    MathSciNet     CrossRef

  3. V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed, Cambridge Univ. Press, Cambridge, 1990.
    MathSciNet     CrossRef

  4. J. Lepowsky and R. L. Wilson, The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), 199-290; II: The case A1(1), principal gradation, Invent. Math. 79 (1985), 417-442.
    MathSciNet     CrossRef     MathSciNet     CrossRef


Rad HAZU Home Page