Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 3-48.

THE TADIĆ PHILOSOPHY: AN OVERVIEW OF THE GUIDING PRINCIPLES AND UNDERLYING IDEAS IN THE WORK OF MARKO TADIĆ

Neven Grbac and Marcela Hanzer

Juraj Dobrila University of Pula, Zagrebačka 30, HR-52100 Pula, Croatia
e-mail: neven.grbac@unipu.hr

Department of Mathematics, University of Zagreb, Bijenička 30, HR-10000 Zagreb, Croatia
e-mail: marcela.hanzer@math.hr


Abstract.   This paper provides an overview of the guiding principles and underlying ideas in the work of Marko Tadić. His research is mostly concerned with the representation theory of reductive groups over local fields. From the authors' perspective, the most important guiding principles in his work are the essential simplicity of harmonic analysis, even in the non-commutative non-compact case, the Lefschetz principle saying that the representation theory over archimedean and non-archimedean fields should be studied in a unified way, and the principle of comparison of Jacquet modules. Besides these, the most prominent and fruitful ideas are the structural external approach to the unitary dual, the unitarizability along the lines, the use of topology of various duals to get information in harmonic analysis and arithmetic of the underlying group, and the interplay between unitarizability and Arthur packets. All these principles and ideas are the subject of this paper.

2020 Mathematics Subject Classification.   22E50, 22E55, 11F70, 01A65, 01A70.

Key words and phrases.   Work of Marko Tadić, representation theory of p-adic groups, harmonic analysis, Lefschetz principle, parabolic induction, unitarizability, Arthur packets.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/mzvkpto109


References:

  1. J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013.
    MathSciNet     CrossRef

  2. H. Atobe, Construction of local A-packets, J. Reine Angew. Math. 790 (2022), 1-51.
    MathSciNet     CrossRef

  3. A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique, Trans. Amer. Math. Soc. 347 (1995), 2179-2189.
    MathSciNet     CrossRef

  4. A.-M. Aubert, Erratum to "Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique", Trans. Amer. Math. Soc. 348 (1996), 4687-4690.
    MathSciNet     CrossRef

  5. A. I. Badulescu and D. A. Renard, Sur une conjecture de Tadić, Glas. Mat. Ser. III 39 (2004), 49-54.
    MathSciNet     CrossRef

  6. E. M. Baruch, A proof of Kirillov's conjecture, Ann. of Math. (2) 158 (2003), 207-252.
    MathSciNet     CrossRef

  7. I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472.
    MathSciNet

  8. C. Blondel, Covers and propagation in symplectic groups, in: Functional analysis IX, Various Publ. Ser. (Aarhus), vol. 48, Univ. Aarhus, Aarhus, 2007, pp. 16-31.
    MathSciNet

  9. C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993.
    MathSciNet     CrossRef

  10. W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, unpublished notes, 1995.

  11. G. Chenevier and D. Renard, Characters of Speh representations and Lewis Carroll identity, Represent. Theory 12 (2008), 447-452.
    MathSciNet     CrossRef

  12. L. Clozel, Spectral theory of automorphic forms, in: Automorphic forms and applications, IAS/Park City Math. Ser., vol. 12, Amer. Math. Soc., Providence, RI, 2007, pp. 43-93.
    MathSciNet     CrossRef

  13. D. K. Faddeev, Complex representations of the general linear group over a finite field, in: Modules and representations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 46 (1974), 64-88 (Russian).
    MathSciNet

  14. J. M. G. Fell, Non-unitary dual spaces of groups, Acta Math. 114 (1965), 267-310.
    MathSciNet     CrossRef

  15. I. M. Gel'fand and M. A. Neumark, Unitäre Darstellungen der klassischen Gruppen, Math. Lehrbücher Monogr., II. Abt., Math. Monogr., vol. 6, Akademie-Verlag, Berlin, 1957.
    MathSciNet

  16. I. M. Gel'fand and D. A. Každan, Representations of the group GL(n,K) where K is a local field, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 73-74.
    MathSciNet

  17. M. Hanzer and M. Tadić, A method of proving non-unitarity of representations of p-adic groups. I, Math. Z. 265 (2010), 799-816.
    MathSciNet     CrossRef

  18. Harish-Chandra, Integrable and square-integrable representations of a semi-simple Lie group, Proc. Natl. Acad. Sci. USA 41 (1955), 314-317.
    MathSciNet     CrossRef

  19. Harish-Chandra, Harmonic analysis on reductive p-adic groups, Lecture Notes in Math., Vol. 162, Springer-Verlag, Berlin-New York, 1970.
    MathSciNet

  20. H. Jacquet, Représentations des groupes linéires p-adiques, in: Theory of group representations and Fourier analysis (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Montecatini Terme, 1970), Centro Internazionale Matematico Estivo (C.I.M.E.), Ed. Cremonese, Rome, 1971, pp. 119-220.
    MathSciNet

  21. C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math. 119 (1997), 1213-1262.
    MathSciNet

  22. A. A. Kirillov, Infinite-dimensional representations of the complete matrix group, Dokl. Akad. Nauk SSSR 144 (1962), 37-39 (Russian).
    MathSciNet

  23. E. Lapid and A. Minguez, On a determinantal formula of Tadić, Amer. J. Math. 136 (2014), 111-142.
    MathSciNet     CrossRef

  24. E. Lapid and A. Minguez, On parabolic induction on inner forms of the general linear group over a non-archimedean local field, Selecta Math. (N.S.) 22 (2016), 2347-2400.
    MathSciNet     CrossRef

  25. E. Lapid, G. Muić and M. Tadić, On the generic unitary dual of quasisplit classical groups, Int. Math. Res. Not. 2004 (2004), 1335-1354.
    MathSciNet     CrossRef

  26. E. Lapid and M. Tadić, Some results on reducibility of parabolic induction for classical groups, Amer. J. Math. 142 (2020), 505-546.
    MathSciNet     CrossRef

  27. I. Matić and M. Tadić, On Jacquet modules of representations of segment type, Manuscripta Math. 147 (2015), 437-476.
    MathSciNet     CrossRef

  28. C. Mœglin, Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité, J. Eur. Math. Soc. (JEMS) 4 (2002), 143-200.
    MathSciNet     CrossRef

  29. C. Mœglin, Paquets d'Arthur discrets pour un groupe classique p-adique, in: Automorphic forms and L-functions II. Local aspects, Contemp. Math., vol. 489, Amer. Math. Soc., Providence, RI, 2009, pp. 179-257.
    MathSciNet     CrossRef

  30. C. Mœglin, Multiplicité 1 dans les paquets d'Arthur aux places p-adiques, in: On certain L-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 333-374.
    MathSciNet

  31. C. Mœglin and M. Tadić, Construction of discrete series for classical p-adic groups, J. Amer. Math. Soc. 15 (2002), 715-786.
    MathSciNet     CrossRef

  32. A. Moy and M. Tadić, The Bernstein center in terms of invariant locally integrable functions, Represent. Theory 6 (2002), 313-329.
    MathSciNet     CrossRef

  33. G. Muić, On the non-unitary unramified dual for classical p-adic groups, Trans. Amer. Math. Soc. 358 (2006), 4653-4687.
    MathSciNet     CrossRef

  34. G. Muić, On certain classes of unitary representations for split classical groups, Canad. J. Math. 59 (2007), 148-185.
    MathSciNet     CrossRef

  35. G. Muić and M. Tadić, Unramified unitary duals for split classical p-adic groups; the topology and isolated representations, in: On certain L-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 375-438.
    MathSciNet

  36. P. J. Sally, Jr. and M. Tadić, Induced representations and classifications for GSp(2, F) and Sp(2, F), Mém. Soc. Math. France (N.S.) (1993), no. 52, 75-133.
    MathSciNet

  37. V. Sécherre, Proof of the Tadić conjecture (U0) on the unitary dual of GLm(D), J. Reine Angew. Math. 626 (2009), 187-203.
    MathSciNet     CrossRef

  38. M. Tadić, Harmonijska analiza sferičkih funkcija na reduktivnim grupama nad lokalnim poljima, doctoral dissertation (Ph.D.), University of Zagreb, 1980 (Croatian).

  39. M. Tadić, The C*-algebra of SL(2,k), Glas. Mat. Ser. III 17 (1982), 249-263.
    MathSciNet

  40. M. Tadić, Harmonic analysis of spherical functions on reductive groups over p-adic fields, Pacific J. Math. 109 (1983), 215-235.
    MathSciNet

  41. M. Tadić, The topology of the dual space of a reductive group over a local field, Glas. Mat. Ser. III 18 (1983), 259-279.
    MathSciNet

  42. M. Tadić, Dual spaces of adelic groups, Glas. Mat. Ser. III 19 (1984), 39-48.
    MathSciNet

  43. M. Tadić, Proof of a conjecture of Bernstein, Math. Ann. 272 (1985), 11-16.
    MathSciNet     CrossRef

  44. M. Tadić, Unitary dual of p-adic GL(n). Proof of Bernstein conjectures, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 39-42.
    MathSciNet     CrossRef

  45. M. Tadić, Unitary representations of general linear group over real and complex field, MPIM Preprint Series (1985), no. 22, 98 pages.

  46. M. Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), 335-382.
    MathSciNet

  47. M. Tadić, Spherical unitary dual of general linear group over non-archimedean local field, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 47-55.
    MathSciNet

  48. M. Tadić, Topology of unitary dual of non-archimedean GL(n), Duke Math. J. 55 (1987), 385-422.
    MathSciNet     CrossRef

  49. M. Tadić, Unitary representations of GL(n), derivatives in the non-Archimedean case, V. Mathematikertreffen Zagreb-Graz (Mariatrost/Graz, 1986), Ber. Math.-Statist. Sekt. Forschungsgesellsch. Joanneum, Forschungszentrum Graz, Graz, 1987, Ber. No. 281, pp. 274-282.
    MathSciNet

  50. M. Tadić, Geometry of dual spaces of reductive groups (non-Archimedean case), J. Analyse Math. 51 (1988), 139-181.
    MathSciNet     CrossRef

  51. M. Tadić, On limits of characters of irreducible unitary representations, Glas. Mat. Ser. III 23 (1988), 15-25.
    MathSciNet

  52. M. Tadić, Induced representations of GL(n,A) for p-adic division algebras A, J. Reine Angew. Math. 405 (1990), 48-77.
    MathSciNet     CrossRef

  53. M. Tadić, On Jacquet modules of induced representations of p-adic symplectic groups, in: Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 305-314.
    MathSciNet

  54. M. Tadić, Notes on representations of non-Archimedean SL(n), Pacific J. Math. 152 (1992), 375-396.
    MathSciNet

  55. M. Tadić, An external approach to unitary representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), 215-252.
    MathSciNet     CrossRef

  56. M. Tadić, Representations of classical p-adic groups, in: Representations of Lie groups and quantum groups (Trento, 1993), Pitman Res. Notes Math. Ser., vol. 311, Longman Sci. Tech., Harlow, 1994, pp. 129-204.
    MathSciNet

  57. M. Tadić, Representations of p-adic symplectic groups, Compositio Math. 90 (1994), 123-181.
    MathSciNet

  58. M. Tadić, On characters of irreducible unitary representations of general linear groups, Abh. Math. Sem. Univ. Hamb. 65 (1995), 341-363.
    MathSciNet     CrossRef

  59. M. Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra 177 (1995), 1-33.
    MathSciNet     CrossRef

  60. M. Tadić, Correspondence on characters of irreducible unitary representations of GL(n,C), Math. Ann. 305 (1996), 419-438.
    MathSciNet     CrossRef

  61. M. Tadić, Jacquet modules and induced representations, Math. Commun. 3 (1998), 1-17.
    MathSciNet

  62. M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29-91.
    MathSciNet     CrossRef

  63. M. Tadić, On regular square integrable representations of p-adic groups, Amer. J. Math. 120 (1998), 159-210.
    MathSciNet

  64. M. Tadić, Square integrable representations of classical p-adic groups corresponding to segments, Represent. Theory 3 (1999), 58-89.
    MathSciNet     CrossRef

  65. M. Tadić, A family of square integrable representations of classical p-adic groups in the case of general half-integral reducibilities, Glas. Mat. Ser. III 37 (2002), 21-57.
    MathSciNet

  66. M. Tadić, On classification of some classes of irreducible representations of classical groups, in: Representations of real and p-adic groups, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 2, Singapore Univ. Press, Singapore, 2004, pp. 95-162.
    MathSciNet     CrossRef

  67. M. Tadić, Representation theory of GL(n) over a p-adic division algebra and unitarity in the Jacquet-Langlands correspondence, Pacific J. Math. 223 (2006), 167-200.
    MathSciNet     CrossRef

  68. M. Tadić, On reducibility and unitarizability for classical p-adic groups, some general results, Canad. J. Math. 61 (2009), 427-450.
    MathSciNet     CrossRef

  69. M. Tadić, GL(n,C)^ and GL(n,R)^, in: Automorphic forms and L-functions II. Local aspects, Contemp. Math., vol. 489, Amer. Math. Soc., Providence, RI, 2009, pp. 285-313.
    MathSciNet     CrossRef

  70. M. Tadić, On automorphic duals and isolated representations; new phenomena, J. Ramanujan Math. Soc. 25 (2010), 295-328.
    MathSciNet

  71. M. Tadić, On invariants of discrete series representations of classical p-adic groups, Manuscripta Math. 135 (2011), 417-435.
    MathSciNet     CrossRef

  72. M. Tadić, Reducibility and discrete series in the case of classical p-adic groups; an approach based on examples, in: Geometry and analysis of automorphic forms of several variables, Ser. Number Theory Appl., vol. 7, World Sci. Publ., Hackensack, NJ, 2012, pp. 254-333.
    MathSciNet     CrossRef

  73. M. Tadić, On interactions between harmonic analysis and the theory of automorphic forms, in: Automorphic representations and L-functions, Tata Inst. Fundam. Res. Stud. Math., vol. 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 591-650.
    MathSciNet

  74. M. Tadić, On tempered and square integrable representations of classical p-adic groups, Sci. China Math. 56 (2013), 2273-2313.
    MathSciNet     CrossRef

  75. M. Tadić, Irreducibility criterion for representations induced by essentially unitary ones (case of non-Archimedean GL(n,A)), Glas. Mat. Ser. III 49 (2014), 123-161.
    MathSciNet     CrossRef

  76. M. Tadić, On unitarizability and reducibility, unpublished notes of the lecture given at the 40th Anniversary Midwest Representation Theory Conference, University of Chicago, Sept. 5-7, 2014.

  77. M. Tadić, On the reducibility points beyond the ends of complementary series of p-adic general linear groups, J. Lie Theory 25 (2015), 147-183.
    MathSciNet

  78. M. Tadić, Remark on representation theory of general linear groups over a non-archimedean local division algebra, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 523 (2015), 27-53.
    MathSciNet

  79. M. Tadić, Some bounds on unitary duals of classical groups - non-archimedean case, Bull. Iranian Math. Soc. 43 (2017), 405-433.
    MathSciNet

  80. M. Tadić, On unitarizability in the case of classical p-adic groups, in: Geometric aspects of the trace formula, Simons Symp., Springer, Cham, 2018, pp. 405-453.
    MathSciNet

  81. M. Tadić, On unitarizability and Arthur packets, Manuscripta Math. 169 (2022), 327-367.
    MathSciNet     CrossRef

  82. M. Tadić, Unitarizability in corank three for classical p-adic groups, Mem. Amer. Math. Soc., vol. 1421, American Mathematical Society, Providence, RI, 2023.
    MathSciNet     CrossRef

  83. G. van Dijk, Computation of certain induced characters of p-adic groups, Math. Ann. 199 (1972), 229-240.
    MathSciNet     CrossRef

  84. D. A. Vogan, Jr., The unitary dual of GL(n) over an Archimedean field, Invent. Math. 83 (1986), 449-505.
    MathSciNet     CrossRef

  85. B. Xu, On Mœglin's parametrization of Arthur packets for p-adic quasisplit Sp(N) and SO(N), Canad. J. Math. 69 (2017), 890-960.
    MathSciNet     CrossRef

  86. B. Xu, On the cuspidal support of discrete series for p-adic quasisplit Sp(N) and SO(N), Manuscripta Math. 154 (2017), 441-502.
    MathSciNet     CrossRef

  87. A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
    MathSciNet


Rad HAZU Home Page