Rad HAZU, Matematičke znanosti, Vol. 28 (2024), 3-48.
THE TADIĆ PHILOSOPHY: AN OVERVIEW OF THE GUIDING PRINCIPLES AND UNDERLYING IDEAS IN THE
WORK OF MARKO TADIĆ
Neven Grbac and Marcela Hanzer
Juraj Dobrila University of Pula, Zagrebačka 30, HR-52100 Pula, Croatia
e-mail: neven.grbac@unipu.hr
Department of Mathematics, University of Zagreb, Bijenička 30, HR-10000 Zagreb, Croatia
e-mail: marcela.hanzer@math.hr
Abstract. This paper provides an overview of the guiding principles
and underlying ideas in the work of Marko Tadić. His research is mostly
concerned with the representation theory of reductive groups over local
fields. From the authors' perspective, the most important guiding principles
in his work are the essential simplicity of harmonic analysis, even
in the non-commutative non-compact case, the Lefschetz principle saying
that the representation theory over archimedean and non-archimedean
fields should be studied in a unified way, and the principle of comparison
of Jacquet modules. Besides these, the most prominent and fruitful ideas
are the structural external approach to the unitary dual, the unitarizability
along the lines, the use of topology of various duals to get information in
harmonic analysis and arithmetic of the underlying group, and the interplay
between unitarizability and Arthur packets. All these principles and
ideas are the subject of this paper.
2020 Mathematics Subject Classification.
22E50, 22E55, 11F70, 01A65, 01A70.
Key words and phrases. Work of Marko Tadić, representation theory of p-adic groups,
harmonic analysis, Lefschetz principle, parabolic induction, unitarizability, Arthur packets.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/mzvkpto109
References:
- J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, American Mathematical
Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013.
MathSciNet
CrossRef
- H. Atobe, Construction of local A-packets, J. Reine Angew. Math. 790 (2022), 1-51.
MathSciNet
CrossRef
- A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations
lisses de longueur finie d'un groupe réductif p-adique, Trans. Amer. Math. Soc.
347 (1995), 2179-2189.
MathSciNet
CrossRef
- A.-M. Aubert, Erratum to "Dualité dans le groupe de Grothendieck de la catégorie des
représentations lisses de longueur finie d'un groupe réductif p-adique", Trans. Amer.
Math. Soc. 348 (1996), 4687-4690.
MathSciNet
CrossRef
- A. I. Badulescu and D. A. Renard, Sur une conjecture de Tadić, Glas. Mat. Ser. III
39 (2004), 49-54.
MathSciNet
CrossRef
- E. M. Baruch, A proof of Kirillov's conjecture, Ann. of Math. (2) 158 (2003), 207-252.
MathSciNet
CrossRef
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic
groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472.
MathSciNet
- C. Blondel, Covers and propagation in symplectic groups, in: Functional analysis IX, Various
Publ. Ser. (Aarhus), vol. 48, Univ. Aarhus, Aarhus, 2007, pp. 16-31.
MathSciNet
- C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups,
Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton,
NJ, 1993.
MathSciNet
CrossRef
- W. Casselman, Introduction to the theory of admissible representations of p-adic reductive
groups, unpublished notes, 1995.
- G. Chenevier and D. Renard, Characters of Speh representations and Lewis Carroll
identity, Represent. Theory 12 (2008), 447-452.
MathSciNet
CrossRef
- L. Clozel, Spectral theory of automorphic forms, in: Automorphic forms and applications,
IAS/Park City Math. Ser., vol. 12, Amer. Math. Soc., Providence, RI, 2007, pp. 43-93.
MathSciNet
CrossRef
- D. K. Faddeev, Complex representations of the general linear group over a finite field,
in: Modules and representations,
Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 46 (1974), 64-88
(Russian).
MathSciNet
- J. M. G. Fell, Non-unitary dual spaces of groups, Acta Math. 114 (1965), 267-310.
MathSciNet
CrossRef
- I. M. Gel'fand and M. A. Neumark, Unitäre Darstellungen der klassischen Gruppen,
Math. Lehrbücher Monogr., II. Abt., Math. Monogr., vol. 6, Akademie-Verlag, Berlin,
1957.
MathSciNet
- I. M. Gel'fand and D. A. Každan, Representations of the group GL(n,K) where K is
a local field, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 73-74.
MathSciNet
- M. Hanzer and M. Tadić, A method of proving non-unitarity of representations of
p-adic groups. I, Math. Z. 265 (2010), 799-816.
MathSciNet
CrossRef
- Harish-Chandra, Integrable and square-integrable representations of a semi-simple Lie
group, Proc. Natl. Acad. Sci. USA 41 (1955), 314-317.
MathSciNet
CrossRef
- Harish-Chandra, Harmonic analysis on reductive p-adic groups, Lecture Notes in Math.,
Vol. 162, Springer-Verlag, Berlin-New York, 1970.
MathSciNet
- H. Jacquet, Représentations des groupes linéires p-adiques, in: Theory of group representations
and Fourier analysis (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo,
Montecatini Terme, 1970), Centro Internazionale Matematico Estivo (C.I.M.E.), Ed.
Cremonese, Rome, 1971, pp. 119-220.
MathSciNet
- C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal
groups, Amer. J. Math. 119 (1997), 1213-1262.
MathSciNet
- A. A. Kirillov, Infinite-dimensional representations of the complete matrix group, Dokl.
Akad. Nauk SSSR 144 (1962), 37-39 (Russian).
MathSciNet
- E. Lapid and A. Minguez, On a determinantal formula of Tadić, Amer. J. Math. 136
(2014), 111-142.
MathSciNet
CrossRef
- E. Lapid and A. Minguez, On parabolic induction on inner forms of the general linear
group over a non-archimedean local field, Selecta Math. (N.S.) 22 (2016), 2347-2400.
MathSciNet
CrossRef
- E. Lapid, G. Muić and M. Tadić, On the generic unitary dual of quasisplit classical
groups, Int. Math. Res. Not. 2004 (2004), 1335-1354.
MathSciNet
CrossRef
- E. Lapid and M. Tadić, Some results on reducibility of parabolic induction for classical
groups, Amer. J. Math. 142 (2020), 505-546.
MathSciNet
CrossRef
- I. Matić and M. Tadić, On Jacquet modules of representations of segment type,
Manuscripta Math. 147 (2015), 437-476.
MathSciNet
CrossRef
- C. Mœglin, Sur la classification des séries discrètes des groupes classiques p-adiques:
paramètres de Langlands et exhaustivité, J. Eur. Math. Soc. (JEMS) 4 (2002), 143-200.
MathSciNet
CrossRef
- C. Mœglin, Paquets d'Arthur discrets pour un groupe classique p-adique, in: Automorphic
forms and L-functions II. Local aspects, Contemp. Math., vol. 489, Amer. Math. Soc.,
Providence, RI, 2009, pp. 179-257.
MathSciNet
CrossRef
- C. Mœglin, Multiplicité 1 dans les paquets d'Arthur aux places p-adiques, in: On certain L-functions,
Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 333-374.
MathSciNet
- C. Mœglin and M. Tadić, Construction of discrete series for classical p-adic groups,
J. Amer. Math. Soc. 15 (2002), 715-786.
MathSciNet
CrossRef
- A. Moy and M. Tadić, The Bernstein center in terms of invariant locally integrable
functions, Represent. Theory 6 (2002), 313-329.
MathSciNet
CrossRef
- G. Muić, On the non-unitary unramified dual for classical p-adic groups, Trans. Amer.
Math. Soc. 358 (2006), 4653-4687.
MathSciNet
CrossRef
- G. Muić, On certain classes of unitary representations for split classical groups, Canad.
J. Math. 59 (2007), 148-185.
MathSciNet
CrossRef
- G. Muić and M. Tadić, Unramified unitary duals for split classical p-adic groups;
the topology and isolated representations, in: On certain L-functions, Clay Math. Proc.,
vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 375-438.
MathSciNet
- P. J. Sally, Jr. and M. Tadić, Induced representations and classifications for GSp(2, F)
and Sp(2, F), Mém. Soc. Math. France (N.S.) (1993), no. 52, 75-133.
MathSciNet
- V. Sécherre, Proof of the Tadić conjecture (U0) on the unitary dual of GLm(D),
J. Reine Angew. Math. 626 (2009), 187-203.
MathSciNet
CrossRef
- M. Tadić, Harmonijska analiza sferičkih funkcija na reduktivnim grupama nad lokalnim
poljima, doctoral dissertation (Ph.D.), University of Zagreb, 1980 (Croatian).
- M. Tadić, The C*-algebra of SL(2,k), Glas. Mat. Ser. III 17 (1982), 249-263.
MathSciNet
- M. Tadić, Harmonic analysis of spherical functions on reductive groups over p-adic
fields, Pacific J. Math. 109 (1983), 215-235.
MathSciNet
- M. Tadić, The topology of the dual space of a reductive group over a local field, Glas.
Mat. Ser. III 18 (1983), 259-279.
MathSciNet
- M. Tadić, Dual spaces of adelic groups, Glas. Mat. Ser. III 19 (1984), 39-48.
MathSciNet
- M. Tadić, Proof of a conjecture of Bernstein, Math. Ann. 272 (1985), 11-16.
MathSciNet
CrossRef
- M. Tadić, Unitary dual of p-adic GL(n). Proof of Bernstein conjectures, Bull. Amer.
Math. Soc. (N.S.) 13 (1985), 39-42.
MathSciNet
CrossRef
- M. Tadić, Unitary representations of general linear group over real and complex field,
MPIM Preprint Series (1985), no. 22, 98 pages.
- M. Tadić, Classification of unitary representations in irreducible representations of
general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19
(1986), 335-382.
MathSciNet
- M. Tadić, Spherical unitary dual of general linear group over non-archimedean local
field, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 47-55.
MathSciNet
- M. Tadić, Topology of unitary dual of non-archimedean GL(n), Duke Math. J. 55
(1987), 385-422.
MathSciNet
CrossRef
- M. Tadić, Unitary representations of GL(n), derivatives in the non-Archimedean case,
V. Mathematikertreffen Zagreb-Graz (Mariatrost/Graz, 1986), Ber. Math.-Statist.
Sekt. Forschungsgesellsch. Joanneum, Forschungszentrum Graz, Graz, 1987,
Ber. No. 281, pp. 274-282.
MathSciNet
- M. Tadić, Geometry of dual spaces of reductive groups (non-Archimedean case), J.
Analyse Math. 51 (1988), 139-181.
MathSciNet
CrossRef
- M. Tadić, On limits of characters of irreducible unitary representations, Glas. Mat.
Ser. III 23 (1988), 15-25.
MathSciNet
- M. Tadić, Induced representations of GL(n,A) for p-adic division algebras A, J. Reine
Angew. Math. 405 (1990), 48-77.
MathSciNet
CrossRef
- M. Tadić, On Jacquet modules of induced representations of p-adic symplectic groups,
in: Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., vol. 101,
Birkhäuser Boston, Boston, MA, 1991, pp. 305-314.
MathSciNet
- M. Tadić, Notes on representations of non-Archimedean SL(n), Pacific J. Math.
152 (1992), 375-396.
MathSciNet
- M. Tadić, An external approach to unitary representations, Bull. Amer. Math. Soc.
(N.S.) 28 (1993), 215-252.
MathSciNet
CrossRef
- M. Tadić, Representations of classical p-adic groups, in: Representations of Lie groups and
quantum groups (Trento, 1993), Pitman Res. Notes Math. Ser., vol. 311, Longman Sci.
Tech., Harlow, 1994, pp. 129-204.
MathSciNet
- M. Tadić, Representations of p-adic symplectic groups, Compositio Math. 90 (1994),
123-181.
MathSciNet
- M. Tadić, On characters of irreducible unitary representations of general linear groups,
Abh. Math. Sem. Univ. Hamb. 65 (1995), 341-363.
MathSciNet
CrossRef
- M. Tadić, Structure arising from induction and Jacquet modules of representations of
classical p-adic groups, J. Algebra 177 (1995), 1-33.
MathSciNet
CrossRef
- M. Tadić, Correspondence on characters of irreducible unitary representations of
GL(n,C), Math. Ann. 305 (1996), 419-438.
MathSciNet
CrossRef
- M. Tadić, Jacquet modules and induced representations, Math. Commun. 3 (1998),
1-17.
MathSciNet
- M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29-91.
MathSciNet
CrossRef
- M. Tadić, On regular square integrable representations of p-adic groups, Amer. J.
Math. 120 (1998), 159-210.
MathSciNet
- M. Tadić, Square integrable representations of classical p-adic groups corresponding to
segments, Represent. Theory 3 (1999), 58-89.
MathSciNet
CrossRef
- M. Tadić, A family of square integrable representations of classical p-adic groups in
the case of general half-integral reducibilities, Glas. Mat. Ser. III 37 (2002), 21-57.
MathSciNet
- M. Tadić, On classification of some classes of irreducible representations of classical
groups, in: Representations of real and p-adic groups, Lect. Notes Ser. Inst. Math. Sci.
Natl. Univ. Singap., vol. 2, Singapore Univ. Press, Singapore, 2004, pp. 95-162.
MathSciNet
CrossRef
- M. Tadić, Representation theory of GL(n) over a p-adic division algebra and unitarity
in the Jacquet-Langlands correspondence, Pacific J. Math. 223 (2006), 167-200.
MathSciNet
CrossRef
- M. Tadić, On reducibility and unitarizability for classical p-adic groups, some general
results, Canad. J. Math. 61 (2009), 427-450.
MathSciNet
CrossRef
- M. Tadić, GL(n,C)^ and GL(n,R)^, in: Automorphic forms and L-functions II. Local
aspects, Contemp. Math., vol. 489, Amer. Math. Soc., Providence, RI, 2009, pp. 285-313.
MathSciNet
CrossRef
- M. Tadić, On automorphic duals and isolated representations; new phenomena,
J. Ramanujan Math. Soc. 25 (2010), 295-328.
MathSciNet
- M. Tadić, On invariants of discrete series representations of classical p-adic groups,
Manuscripta Math. 135 (2011), 417-435.
MathSciNet
CrossRef
- M. Tadić, Reducibility and discrete series in the case of classical p-adic groups; an
approach based on examples, in: Geometry and analysis of automorphic forms of several
variables, Ser. Number Theory Appl., vol. 7, World Sci. Publ., Hackensack, NJ, 2012,
pp. 254-333.
MathSciNet
CrossRef
- M. Tadić, On interactions between harmonic analysis and the theory of automorphic
forms, in: Automorphic representations and L-functions, Tata Inst. Fundam. Res. Stud.
Math., vol. 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 591-650.
MathSciNet
- M. Tadić, On tempered and square integrable representations of classical p-adic groups,
Sci. China Math. 56 (2013), 2273-2313.
MathSciNet
CrossRef
- M. Tadić, Irreducibility criterion for representations induced by essentially unitary
ones (case of non-Archimedean GL(n,A)), Glas. Mat. Ser. III 49 (2014), 123-161.
MathSciNet
CrossRef
- M. Tadić, On unitarizability and reducibility, unpublished notes of the lecture given
at the 40th Anniversary Midwest Representation Theory Conference, University of
Chicago, Sept. 5-7, 2014.
- M. Tadić, On the reducibility points beyond the ends of complementary series of p-adic
general linear groups, J. Lie Theory 25 (2015), 147-183.
MathSciNet
- M. Tadić, Remark on representation theory of general linear groups over a non-archimedean
local division algebra, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 523
(2015), 27-53.
MathSciNet
- M. Tadić, Some bounds on unitary duals of classical groups - non-archimedean case,
Bull. Iranian Math. Soc. 43 (2017), 405-433.
MathSciNet
- M. Tadić, On unitarizability in the case of classical p-adic groups, in: Geometric aspects
of the trace formula, Simons Symp., Springer, Cham, 2018, pp. 405-453.
MathSciNet
- M. Tadić, On unitarizability and Arthur packets, Manuscripta Math. 169 (2022), 327-367.
MathSciNet
CrossRef
- M. Tadić, Unitarizability in corank three for classical p-adic groups, Mem. Amer. Math.
Soc., vol. 1421, American Mathematical Society, Providence, RI, 2023.
MathSciNet
CrossRef
- G. van Dijk, Computation of certain induced characters of p-adic groups, Math. Ann.
199 (1972), 229-240.
MathSciNet
CrossRef
- D. A. Vogan, Jr., The unitary dual of GL(n) over an Archimedean field, Invent. Math.
83 (1986), 449-505.
MathSciNet
CrossRef
- B. Xu, On Mœglin's parametrization of Arthur packets for p-adic quasisplit Sp(N)
and SO(N), Canad. J. Math. 69 (2017), 890-960.
MathSciNet
CrossRef
- B. Xu, On the cuspidal support of discrete series for p-adic quasisplit Sp(N) and
SO(N), Manuscripta Math. 154 (2017), 441-502.
MathSciNet
CrossRef
- A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible
representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
MathSciNet
Rad HAZU Home Page