Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 231-243.

THE (LARGEST) LEBESGUE NUMBER AND ITS RELATIVE VERSION/h3>

Vera Tonić

Department of Mathematics, University of Rijeka, 51 000 Rijeka, Croatia
e-mail: vera.tonic@math.uniri.hr


Abstract.   In this paper we compare different definitions of the (largest) Lebesgue number of a cover U for a metric space X. We also introduce the relative version for the Lebesgue number of a covering family U for a subset AX, and justify the relevance of introducing it by giving a corrected statement and proof of the Lemma 3.4 from the paper by Buyalo and Lebedeva (2007), involving λ-quasi homothetic maps with coefficient R between metric spaces and the comparison of the mesh and the Lebesgue number of a covering family for a subset on both sides of the map.

2020 Mathematics Subject Classification.   54E35, 51F30.

Key words and phrases.   Lebesgue number, mesh of a cover, asymptotic dimension.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/94kl4clkom


References:

  1. G. Bell and A. Dranishnikov, Asymptotic dimension, Topology Appl. 155 (2008), 1265-1296.
    MathSciNet     CrossRef

  2. S. V. Buyalo and N. D. Lebedeva, Dimensions of locally and asymptotically self-similar spaces, Algebra i Analiz 9(1) (2007), 60-92, (published in English in St Petersburg Mathematical Journal 19(1) (2008), 45-65).
    MathSciNet     CrossRef

  3. S. Buyalo and V. Schroeder, Elements of asymptotic geometry, EMS Monogr. Math., European Mathematical Society (EMS), Zürich, 2007.
    MathSciNet     CrossRef

  4. S. V. Buyalo, Asymptotic dimension of a hyperbolic space and the capacity dimension of its boundary at infinity, Algebra i Analiz 17(2) (2005), 70-95, (published in English in St Petersburg Mathematical Journal 17(2) (2006), 267-283).
    MathSciNet     CrossRef

  5. M. Cordes, T. Hartnick and V. Tonić, Foundations of geometric approximate group theory, preprint, 2020, arXiv:2012.15303.

  6. M. Coornaert, Topological dimension and dynamical systems, Universitext, Springer, Cham, 2015.
    MathSciNet     CrossRef

  7. J. Dugundji, Topology, Allyn and Bacon Series in Advanced Mathematics. Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978.
    MathSciNet

  8. R. Engelking, General topology, Sigma Ser. Pure Math., vol.6, Heldermann Verlag, Berlin, second edition, 1989.
    MathSciNet

  9. M. Giusto and A. Marcone, Lebesgue numbers and Atsuji spaces in subsystems of second-order arithmetic, Arch. Math. Logic 37 (1998), no.5-6, 343-362.
    MathSciNet     CrossRef

  10. S.-T. Hu, Introduction to general topology, Holden-Day, Inc., San Francisco, Calif.- London-Amsterdam, 1966.
    MathSciNet

  11. J. L. Kelley, General topology, Graduate Texts in Mathematics, No. 27, Springer-Verlag, New York-Berlin, 1975.
    MathSciNet

  12. J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.
    MathSciNet

  13. Š. Ungar, Matematička analiza 3, PMF-Matematički odjel, Zagreb, 1994. (in Croatian).


Rad HAZU Home Page