Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 203-218.

ON THE VARCHENKO DETERMINANT FORMULA FOR ORIENTED BRAID ARRANGEMENTS

Milena Sošić

Faculty of Mathematics, University of Rijeka, 51 000 Rijeka, Croatia
e-mail: msosic@uniri.hr


Abstract.   In this paper, we first consider the arrangement of hyperplanes and then the corresponding oriented arrangement of hyperplanes in n-dimensional real space. Following the work of Varchenko, who studied the determinant of the quantum bilinear form of a real configuration and the determinant formula for a matroid bilinear form, we discuss here first some of the main properties of the braid arrangement and then of the oriented braid arrangements in n-dimensional real space. The main result of this study is a theorem that provides an explicit formula for determining the determinant of the matrix associated with the oriented braid arrangement. The proof of this theorem is based on the results of two different approaches. One is to determine the space of all constants in the multiparametric quon algebra equipped with a multiparametric q-differential structure, and the other is to study the feasibility of multiparametric quon algebras in Hilbert space.

2020 Mathematics Subject Classification.   52C35, 05E16.

Key words and phrases.   Arrangements of hyperplanes, braid arrangement, oriented braid arrangements, quantum bilinear form, multiparametric quon algebra.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/moxpjh1l0m


References:

  1. M. Aguiar and S. Mahajan, Topics in hyperplane arrangements, Math. Surveys Monogr., Vol. 226, American Mathematical Society, Providence, RI, 2017.
    MathSciNet     CrossRef

  2. T. Brylawski and A. Varchenko, The determinant formula for a matroid bilinear form, Adv. Math. 129 (1997), 1-24.
    MathSciNet     CrossRef

  3. G. Denham and P. Hanlon, On the Smith normal form of the Varchenko bilinear form of a hyperplane arrangement, Pacific J. Math. Special issue in memoriam Olga Taussky-Todd (1997), 123-146.
    MathSciNet     CrossRef

  4. G. Duchamp, A. Klyachko, D. Krob and J.-Y. Thibon, Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras, Discrete Math. Theor. Comput. Sci. 1 (1997), 159-216.
    MathSciNet

  5. C. Frønsdal and A. Galindo, The ideals of free differential algebras, J. Algebra 222 (1999), 708-746.
    MathSciNet     CrossRef

  6. W. Hochstättler and V. Welker, The Varchenko determinant for oriented matroids, Math. Z. 293 (2019), 1415-1430.
    MathSciNet     CrossRef

  7. S. Meljanac and D. Svrtan, Study of Gram matrices in Fock representation of multiparametric canonical commutation relations, extended Zagier's conjecture, hyperplane arrangements and quantum groups, Math. Commun. 1 (1996), 1-24.
    MathSciNet

  8. P. Orlik, Introduction to arrangements, CBMS Regional Conf. Ser. in Math. 72, American Mathematical Society, Providence, RI, 1989.
    MathSciNet     CrossRef

  9. P. Orlik and H. Terao, Arrangements of hyperplanes, Springer-Verlag, Berlin, 1992.
    MathSciNet     CrossRef

  10. H. Randriamaro, A multiparametric quon algebra, Bull. Iranian Math. Soc. 47 (2021), 843-854.
    MathSciNet     CrossRef

  11. V. V. Schechtman and A. N. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent. Math. 106 (1991), 139-194.
    MathSciNet     CrossRef

  12. M. Sošić, Computation of constants in multiparametric quon algebras. A twisted group algebra approach, Math. Commun. 22 (2017), 177-192.
    MathSciNet

  13. M. Sošić, A representation of twisted group algebra of symmetric groups on weight subspaces of free associative complex algebra, Math. Forum 26 (2014), 23-48.
    MathSciNet

  14. R. P. Stanley, Hyperplane arrangements, interval orders and trees, Proc. Natl. Acad. Sci. U.S.A. 93 (1996), 2620-2625.
    MathSciNet     CrossRef

  15. A. N. Varchenko, Bilinear form of real configuration of hyperplanes, Adv. Math. 97 (1993), 110-144.
    MathSciNet     CrossRef

  16. D. Zagier, Realizability of a model in infinite statistics, Comm. Math. Phys. 147 (1992), 199-210.
    MathSciNet

  17. T. Zaslavsky, Faces of a hyperplane arrangement enumerated by ideal dimension with application to plane, plaids and Shi, Geom. Dedicata 98 (2003), 63-80.
    MathSciNet     CrossRef


Rad HAZU Home Page