Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 189-202.
ON SOME PROPERTIES OF KIEPERT PARABOLA IN THE ISOTROPIC PLANE
Vladimir Volenec and Zdenka Kolar-Begović
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: volenec@math.hr
Department of Mathematics and Faculty of Education, University of Osijek, 31 000 Osijek, Croatia
e-mail: zkolar@mathos.hr
Abstract. In this paper we consider the curve which is an envelope
of the axes of homology of a given triangle and the corresponding Kiepert
triangles in the isotropic plane - the Kiepert parabola of the given triangle.
We derive the equation of this parabola by using appropriate coordinate
system. We give some new significant characterizations of this curve which
are not valid in the Euclidean plane. We have also studied the relationships
between Kiepert parabola and the Steiner point, the tangential triangle as
well as the Jerabek hyperbola of the given triangle.
2020 Mathematics Subject Classification.
51N25.
Key words and phrases. Isotropic plane, Kiepert parabola, Steiner point.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yl4okf5qp9
References:
- Z. Kolar-Begović, R. Kolar-Šuper and V. Volenec, Jeřabek hyperbola of a triangle in
an isotropic plane, KOG 22 (2018), 12-19.
MathSciNet
CrossRef
- R. Kolar-Šuper, Z. Kolar-Begović, V. Volenec and J. Beban-Brkić, Metrical relationships
in a standard triangle in an isotropic plane, Math. Commun. 10 (2005),
149-157.
MathSciNet
- R. Kolar-Šuper, Z. Kolar-Begović and V. Volenec, Steiner point of a triangle in an
isotropic plane, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 20 (2016), 83-95.
MathSciNet
- H. Sachs, Ebene isotrope Geometrie, Vieweg–Verlag, Braunschweig, 1987.
MathSciNet
CrossRef
- K. Strubecker, Geometrie in einer isotropen Ebene, Math. Naturwiss. Unterricht 15 (1962/1963), 297-306, 343-351, 385-394.
MathSciNet
- V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Kiepert triangles in an isotropic
plane, Sarajevo J. Math. 19 (2011), 81-90.
MathSciNet
- V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Kiepert hyperbola in an isotropic
plane, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 22 (2018), 129-143.
MathSciNet
CrossRef
- V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Steiner's ellipses of the triangle in
an isotropic plane, Math. Pannon. 21 (2010), 229-238.
MathSciNet
Rad HAZU Home Page