Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 153-165.
NEW CLASSES OF HIGHER ORDER VARIATIONAL-LIKE INEQUALITIES
Muhammad Aslam Noor and Khalida Inayat Noor
Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
e-mail: noormaslam@gmail.com
e-mail: khalidan@gmail.com
Abstract. In this paper, we prove that the optimality conditions
of the higher order convex functions are characterized by a class of variational
inequalities, which is called the higher order variational inequality.
Auxiliary principle technique is used to suggest an implicit method for
solving higher order variational inequalities. Convergence analysis of the
proposed method is investigated using the pseudo-monotonicity of the operator.
Some special cases also discussed. Results obtained in this paper
can be viewed as refinement and improvement of previously known results.
2020 Mathematics Subject Classification.
49J40, 90C33, 26D15, 26A51.
Key words and phrases. Convex functions, preinvex functions, monotone operators,
variational-like inequalities, iterative methods, convergence.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/mwo1vc3ewy
References:
- A. Ben-Isreal and B. Mond, What is invexity?, J. Austral. Math. Soc. Ser. B 28
(1986), 1-9.
MathSciNet
CrossRef
- M. I. Bloach and M. A. Noor, Perturbed mixed variational-like inequalities, AIMS
Math. 5 (2020), 2153-2162.
MathSciNet
CrossRef
- M. I. Bloach, M. A. Noor and K. I. Noor, Well-posedness of triequilbrium-like problems,
Inter. J. Anal. Appl. 20 (2022), Paper no.3.
CrossRef
- G. Cristescu and L. Lupsa, Non-Connected Convexities and Applications, Kluwer Academic
Publisher, Dordrecht, 2002.
MathSciNet
CrossRef
- R. Glowinski, J. L. Lions and R. Trémilères, Numerical Analysis of Variational Inequalities,
Nort-Holland, Amsterdam, 1981.
MathSciNet
- M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80
(1980), 545-550.
MathSciNet
CrossRef
- J. K. Kim, P. N. Anh and Y. M. Nam, Strong convergence of an extended extragradient
method for equibrium problems and fixed point problems, J. Kor. Math. Soc. 49 (2012),
187-200.
MathSciNet
CrossRef
- J. K. Kim, S. Y. Cho and X. Qin, Hybrid projection algorithms for generalized
equilibrium problems and strictly pseudocontractive mappings, J. Inequal. Appl.
2010 (2010), Art. ID 312602, 18 pp.
MathSciNet
CrossRef
- J. K. Kim and Salahuddin, Extragradient methods for generalized mixed equilibrium
problems and fixed point problems in Hilbert spaces, Nonlinear Funct. Anal. Appl.,
22 (2017), 693-709.
- J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math.
20 (1967), 493-512.
MathSciNet
CrossRef
- Y. Liu and Y. Cui, A modified gradient projection algorithm for variational inequalities
and relatively nonexpansive mappings in Banach spaces, Nonlinear Funct. Anal. Appl.
22 (2017), 433-448.
- R. S. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal.
Appl. 189 (1995), 901-908.
MathSciNet
CrossRef
- B. B. Mohsen, M. A. Noor, K. I. Noor and M. Postolache, Strongly convex
functions of higher order involving bifunction, Mathematics 7(11) (2019), 1028.
CrossRef
- C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, 2018.
MathSciNet
CrossRef
- M. A. Noor, On Variational Inequalities, PhD Thesis, Brunel University, London, 1975.
- M. A. Noor, New approximation schemes for general variational inequalities, J. Math.
Anal. Appl. 251 (2000), 217-229.
MathSciNet
CrossRef
- M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput.
152 (2004), 199-277,
MathSciNet
CrossRef
- M. A. Noor, Variational-like inequalities, Optimization 30 (1994), 323-330.
MathSciNet
CrossRef
- M. A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9 (2006),
529-566.
MathSciNet
CrossRef
- M. A. Noor and K. I. Noor, On strongly generalized preinvex functions, JIPAM. J. Inequal.
Pure Appl. Math. 6(4) (2005), Article 102.
MathSciNet
- M. A. Noor and K. I. Noor, Some characterization of strongly preinvex functions, J.
Math. Anal. Appl. 316 (2006), 697-706.
MathSciNet
CrossRef
- M. A. Noor and K. I. Noor, Properties of higher order strongly preinvex functions,
Numer. Algebra Control Optim. 11 (2021), 431-441.
MathSciNet
CrossRef
- M. A. Noor and K. I. Noor, Some new classes of strongly generalized preinvex functions,
TWMS J. Pure Appl. Math. 12 (2021), 181-192.
MathSciNet
- M. A. Noor, K. I. Noor and H. M. Y. Al-Bayatt, Higher order variational inequalities, Inform. Sci. Lett. 11
(2022), 1-5.
- M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable harmonic
preinvex functions (survey), TWMS J. Pur Appl. Math. 7 (2016), 3-19.
MathSciNet
- M. A. Noor and K. I. Noor, New classes of preinvex functions and variational-like
inequalities, Filomat 35 (2021), 2081-2097.
MathSciNet
CrossRef
- M. A. Noor, K. I. Noor and I. M. Baloch, Auxiliary principle technique for strongly
mixed variational-like inequalities, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), 93-100.
MathSciNet
- M. A. Noor, K. I. Noor and Th. M. Rassias, New trends in general variational inequalities,
Acta Appl. Math. 170 (2020), 981-1064.
MathSciNet
CrossRef
- M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-Shemas, On difference of two monotone
operators, Optim. Lett. 3 (2009), 329-335.
MathSciNet
CrossRef
- O. K. Oyewole and O. T. Mewomo, Existence results for new generalized mixed equilibrium
and fixed point problems in Banach spaces, Nonlinear Funct. Anal. Appl.
25 (2020), 273-301.
- B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum
problems with restrictions, Soviet Math. Dokl. 7 (1966), 72-75.
- G. Ruiz-Garzión, R. Osuna-Gómez and A. Rufián-Lizan, Generalized invex monotonicity,
European J. Oper. Res. 144 (2003), 501-512.
MathSciNet
CrossRef
- G. Stampacchia, Formes bilineáires coercives sur les ensembles convexes,
C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
MathSciNet
- X. M. Yang, Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities,
European J. Oper. Res. 164 (2005), 115-119.
MathSciNet
CrossRef
- X. M. Yang, Q. Yang and K. L. Teo, Generalized invexity and generalized invariant
monotonicity, J. Optim. Theory Appl. 117 (2003), 607-625.
MathSciNet
CrossRef
- T. Weir and B. Mond, Pre-invex functions in multiobjective optimization, J. Math.
Anal. Appl. 136 (1988), 29-38.
MathSciNet
CrossRef
- D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative
schemes for solving variational inequalities, SIAM J. Optim. 6 (1996), 714-726.
MathSciNet
CrossRef
Rad HAZU Home Page