Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 153-165.

NEW CLASSES OF HIGHER ORDER VARIATIONAL-LIKE INEQUALITIES

Muhammad Aslam Noor and Khalida Inayat Noor

Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
e-mail: noormaslam@gmail.com
e-mail: khalidan@gmail.com


Abstract.   In this paper, we prove that the optimality conditions of the higher order convex functions are characterized by a class of variational inequalities, which is called the higher order variational inequality. Auxiliary principle technique is used to suggest an implicit method for solving higher order variational inequalities. Convergence analysis of the proposed method is investigated using the pseudo-monotonicity of the operator. Some special cases also discussed. Results obtained in this paper can be viewed as refinement and improvement of previously known results.

2020 Mathematics Subject Classification.   49J40, 90C33, 26D15, 26A51.

Key words and phrases.   Convex functions, preinvex functions, monotone operators, variational-like inequalities, iterative methods, convergence.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/mwo1vc3ewy


References:

  1. A. Ben-Isreal and B. Mond, What is invexity?, J. Austral. Math. Soc. Ser. B 28 (1986), 1-9.
    MathSciNet     CrossRef

  2. M. I. Bloach and M. A. Noor, Perturbed mixed variational-like inequalities, AIMS Math. 5 (2020), 2153-2162.
    MathSciNet     CrossRef

  3. M. I. Bloach, M. A. Noor and K. I. Noor, Well-posedness of triequilbrium-like problems, Inter. J. Anal. Appl. 20 (2022), Paper no.3.
    CrossRef

  4. G. Cristescu and L. Lupsa, Non-Connected Convexities and Applications, Kluwer Academic Publisher, Dordrecht, 2002.
    MathSciNet     CrossRef

  5. R. Glowinski, J. L. Lions and R. Trémilères, Numerical Analysis of Variational Inequalities, Nort-Holland, Amsterdam, 1981.
    MathSciNet

  6. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1980), 545-550.
    MathSciNet     CrossRef

  7. J. K. Kim, P. N. Anh and Y. M. Nam, Strong convergence of an extended extragradient method for equibrium problems and fixed point problems, J. Kor. Math. Soc. 49 (2012), 187-200.
    MathSciNet     CrossRef

  8. J. K. Kim, S. Y. Cho and X. Qin, Hybrid projection algorithms for generalized equilibrium problems and strictly pseudocontractive mappings, J. Inequal. Appl. 2010 (2010), Art. ID 312602, 18 pp.
    MathSciNet     CrossRef

  9. J. K. Kim and Salahuddin, Extragradient methods for generalized mixed equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear Funct. Anal. Appl., 22 (2017), 693-709.

  10. J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-512.
    MathSciNet     CrossRef

  11. Y. Liu and Y. Cui, A modified gradient projection algorithm for variational inequalities and relatively nonexpansive mappings in Banach spaces, Nonlinear Funct. Anal. Appl. 22 (2017), 433-448.

  12. R. S. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908.
    MathSciNet     CrossRef

  13. B. B. Mohsen, M. A. Noor, K. I. Noor and M. Postolache, Strongly convex functions of higher order involving bifunction, Mathematics 7(11) (2019), 1028.
    CrossRef

  14. C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, 2018.
    MathSciNet     CrossRef

  15. M. A. Noor, On Variational Inequalities, PhD Thesis, Brunel University, London, 1975.

  16. M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229.
    MathSciNet     CrossRef

  17. M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), 199-277,
    MathSciNet     CrossRef

  18. M. A. Noor, Variational-like inequalities, Optimization 30 (1994), 323-330.
    MathSciNet     CrossRef

  19. M. A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9 (2006), 529-566.
    MathSciNet     CrossRef

  20. M. A. Noor and K. I. Noor, On strongly generalized preinvex functions, JIPAM. J. Inequal. Pure Appl. Math. 6(4) (2005), Article 102.
    MathSciNet

  21. M. A. Noor and K. I. Noor, Some characterization of strongly preinvex functions, J. Math. Anal. Appl. 316 (2006), 697-706.
    MathSciNet     CrossRef

  22. M. A. Noor and K. I. Noor, Properties of higher order strongly preinvex functions, Numer. Algebra Control Optim. 11 (2021), 431-441.
    MathSciNet     CrossRef

  23. M. A. Noor and K. I. Noor, Some new classes of strongly generalized preinvex functions, TWMS J. Pure Appl. Math. 12 (2021), 181-192.
    MathSciNet

  24. M. A. Noor, K. I. Noor and H. M. Y. Al-Bayatt, Higher order variational inequalities, Inform. Sci. Lett. 11 (2022), 1-5.

  25. M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable harmonic preinvex functions (survey), TWMS J. Pur Appl. Math. 7 (2016), 3-19.
    MathSciNet

  26. M. A. Noor and K. I. Noor, New classes of preinvex functions and variational-like inequalities, Filomat 35 (2021), 2081-2097.
    MathSciNet     CrossRef

  27. M. A. Noor, K. I. Noor and I. M. Baloch, Auxiliary principle technique for strongly mixed variational-like inequalities, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), 93-100.
    MathSciNet

  28. M. A. Noor, K. I. Noor and Th. M. Rassias, New trends in general variational inequalities, Acta Appl. Math. 170 (2020), 981-1064.
    MathSciNet     CrossRef

  29. M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-Shemas, On difference of two monotone operators, Optim. Lett. 3 (2009), 329-335.
    MathSciNet     CrossRef

  30. O. K. Oyewole and O. T. Mewomo, Existence results for new generalized mixed equilibrium and fixed point problems in Banach spaces, Nonlinear Funct. Anal. Appl. 25 (2020), 273-301.

  31. B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72-75.

  32. G. Ruiz-Garzión, R. Osuna-Gómez and A. Rufián-Lizan, Generalized invex monotonicity, European J. Oper. Res. 144 (2003), 501-512.
    MathSciNet     CrossRef

  33. G. Stampacchia, Formes bilineáires coercives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
    MathSciNet

  34. X. M. Yang, Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities, European J. Oper. Res. 164 (2005), 115-119.
    MathSciNet     CrossRef

  35. X. M. Yang, Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl. 117 (2003), 607-625.
    MathSciNet     CrossRef

  36. T. Weir and B. Mond, Pre-invex functions in multiobjective optimization, J. Math. Anal. Appl. 136 (1988), 29-38.
    MathSciNet     CrossRef

  37. D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6 (1996), 714-726.
    MathSciNet     CrossRef


Rad HAZU Home Page