Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 143-151.
NUMERICAL RADIUS POINTS OF A BILINEAR MAPPING
FROM THE PLANE WITH THE l1-NORM INTO ITSELF
Sung Guen Kim
Department of Mathematics, Kyungpook National University,
Daegu 702-701, Republic of Korea
e-mail: sgk317@knu.ac.kr
Abstract. For n ≥ 2 and a Banach space E we let
Π(E) = {[x*, x1, . . . , xn] :
x*(xj) = ∥x*∥ = ∥xj∥ = 1 for j = 1, . . . , n}.
Let L(nE : E) denote the space of all continuous n-linear mappings from E
to itself. An element [x*, x1, . . . , xn] ∈ Π(E)
is called a numerical radius point of T ∈ L(nE : E) if
|x*(T(x1, . . . , xn))| = v(T),
where v(T) is the numerical radius of T. Nradius(T) denotes the set of
all numerical radius points of T. In this paper we classify Nradius(T) for
every T ∈ L(2l12 : l12)
in connection with Norm(T), where Norm(T) denotes
the set of all norming points of T.
2020 Mathematics Subject Classification.
46A22.
Key words and phrases. Numerical radius, numerical radius attaining bilinear forms,
numerical radius points.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y7v64tvgly
References:
- R. M. Aron, C. Finet and E. Werner, Some remarks on norm-attaining n-linear forms,
in: Function spaces (Edwardsville, IL, 1994), Lecture Notes in Pure and Appl.
Math., 172, Dekker, New York, 1995, pp. 19-28.
MathSciNet
- E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer.
Math. Soc. 67 (1961), 97-98.
MathSciNet
CrossRef
- Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings
and polynomials, J. London Math. Soc. (2) 54 (1996), 135-147.
MathSciNet
CrossRef
- S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London
1999.
MathSciNet
CrossRef
- M. Jiménez Sevilla and R. Payá, Norm attaining multilinear forms and polynomials
on preduals of Lorentz sequence spaces, Studia Math. 127 (1998), 99-112.
MathSciNet
CrossRef
- Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Norm or numerical radius attaining
polynomial on C(K), J. Math. Anal. Appl. 295 (2004), 80-96.
MathSciNet
CrossRef
- S. G. Kim, The norming set of a bilinear form on l∞2,
Comment. Math. 60 (2020), 37-63.
MathSciNet
- S. G. Kim, The norming set of a polynomial in P(2l∞2),
Honam Math. J. 42 (2020),
569-576.
MathSciNet
CrossRef
- S. G. Kim, The norming set of a symmetric bilinear form on the plane with the
supremum norm, Mat. Stud. 55 (2021), 171-180.
MathSciNet
CrossRef
- S. G. Kim, The norming set of a symmetric 3-linear form on the plane with the
l1-norm, New Zealand J. Math. 51 (2021), 95-108.
MathSciNet
CrossRef
- S. G. Kim, Numerical radius points of
L(ml∞n : l∞n),
New Zealand J. Math. 53 (2022), 1-10.
MathSciNet
CrossRef
- S. G. Kim, Three kinds of numerical indices of lp-spaces, Glas. Mat. Ser. III 55(77)
(2022), 49-61.
MathSciNet
CrossRef
- S. G. Kim, NA(L(nl1 : l1)) =
NRA(L(nl1 : l1)), Acta Sci. Math. (Szeged)
88 (2022), 769-775.
MathSciNet
CrossRef
Rad HAZU Home Page