Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 143-151.

NUMERICAL RADIUS POINTS OF A BILINEAR MAPPING FROM THE PLANE WITH THE l1-NORM INTO ITSELF

Sung Guen Kim

Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea
e-mail: sgk317@knu.ac.kr


Abstract.   For n ≥ 2 and a Banach space E we let Π(E) = {[x*, x1, . . . , xn] : x*(xj) = ∥x*∥ = ∥xj∥ = 1 for j = 1, . . . , n}. Let L(nE : E) denote the space of all continuous n-linear mappings from E to itself. An element [x*, x1, . . . , xn] ∈ Π(E) is called a numerical radius point of TL(nE : E) if |x*(T(x1, . . . , xn))| = v(T), where v(T) is the numerical radius of T. Nradius(T) denotes the set of all numerical radius points of T. In this paper we classify Nradius(T) for every TL(2l12 : l12) in connection with Norm(T), where Norm(T) denotes the set of all norming points of T.

2020 Mathematics Subject Classification.   46A22.

Key words and phrases.   Numerical radius, numerical radius attaining bilinear forms, numerical radius points.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/y7v64tvgly


References:

  1. R. M. Aron, C. Finet and E. Werner, Some remarks on norm-attaining n-linear forms, in: Function spaces (Edwardsville, IL, 1994), Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995, pp. 19-28.
    MathSciNet

  2. E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98.
    MathSciNet     CrossRef

  3. Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. (2) 54 (1996), 135-147.
    MathSciNet     CrossRef

  4. S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London 1999.
    MathSciNet     CrossRef

  5. M. Jiménez Sevilla and R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 127 (1998), 99-112.
    MathSciNet     CrossRef

  6. Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Norm or numerical radius attaining polynomial on C(K), J. Math. Anal. Appl. 295 (2004), 80-96.
    MathSciNet     CrossRef

  7. S. G. Kim, The norming set of a bilinear form on l2, Comment. Math. 60 (2020), 37-63.
    MathSciNet

  8. S. G. Kim, The norming set of a polynomial in P(2l2), Honam Math. J. 42 (2020), 569-576.
    MathSciNet     CrossRef

  9. S. G. Kim, The norming set of a symmetric bilinear form on the plane with the supremum norm, Mat. Stud. 55 (2021), 171-180.
    MathSciNet     CrossRef

  10. S. G. Kim, The norming set of a symmetric 3-linear form on the plane with the l1-norm, New Zealand J. Math. 51 (2021), 95-108.
    MathSciNet     CrossRef

  11. S. G. Kim, Numerical radius points of L(mln : ln), New Zealand J. Math. 53 (2022), 1-10.
    MathSciNet     CrossRef

  12. S. G. Kim, Three kinds of numerical indices of lp-spaces, Glas. Mat. Ser. III 55(77) (2022), 49-61.
    MathSciNet     CrossRef

  13. S. G. Kim, NA(L(nl1 : l1)) = NRA(L(nl1 : l1)), Acta Sci. Math. (Szeged) 88 (2022), 769-775.
    MathSciNet     CrossRef


Rad HAZU Home Page