Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 133-142.
A GROUND STATE SOLUTION FOR A NONHOMOGENEOUS ELLIPTIC KIRCHHOFF TYPE
PROBLEM INVOLVING CRITICAL GROWTH AND HARDY TERM
Safia Benmansour, Nadjet Yagoub and Atika Matallah
Ecole supérieure de management de Tlemcen,
Laboratoire d'analyse et controle des équations aux dérivées partielles,
Université Djilali, Liabes Sidi Bel Abbès, Algérie
e-mail: safiabenmansour@hotmail.fr
Laboratoire d'analyse et controle des équations aux dérivées partielles,
Université Djilali, Liabes Sidi Bel Abbès, Algérie
e-mail: manadjet222@gmail.com
Ecole supérieure de management de Tlemcen,
Laboratoire d'analyse et controle des équations aux dérivées partielles,
Université Djilali, Liabes Sidi Bel Abbès, Algérie
e-mail: atika_matallah@yahoo.fr
Abstract. This paper concerns singular elliptic Kirchhof’s equations
whose nonlinearity has a critical growth and contains an inhomogeneous
perturbation in a regular bounded domain of R3. To explore the existence
of a ground state solution, we rely on various techniques related to
variational methods and the Nehari decomposition.
2020 Mathematics Subject Classification.
35J20, 35IJ60, 47J30.
Key words and phrases. Variational methods, critical growth, Hardy term, singular
elliptic problems, Kirchhoff equations.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/m8vqrtgr09
References:
- C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear
elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85-93.
MathSciNet
CrossRef
- P. D'Ancona and Y. Shibata, On global solvability of nonlinear viscoelastic equations
in the analytic category, Math. Methods Appl. Sci. 17 (1994) 477-489.
MathSciNet
CrossRef
- K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality,
J. London Math. Soc. (2) 48 (1993), 137-151.
MathSciNet
CrossRef
- C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problems
with critical exponent functions, J. Differential Equations 250 (2011), 1876-1908.
MathSciNet
CrossRef
- P. Drábek and S. I. Pohozaev, Positive solutions for the p-Laplacian: application of
the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 703-726.
MathSciNet
CrossRef
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
MathSciNet
CrossRef
- D. Kang and Y. Deng, Multiple solutions for inhomogeneous elliptic problems
involving critical Sobolev-Hardy, Nonlinear Anal. 60 (2005), 729-753.
MathSciNet
CrossRef
- G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
- G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent,
Ann. Inst. H. Poincaré C Anal. Non Linéaire 9 (1992) 281-304.
MathSciNet
CrossRef
Rad HAZU Home Page