Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 133-142.

A GROUND STATE SOLUTION FOR A NONHOMOGENEOUS ELLIPTIC KIRCHHOFF TYPE PROBLEM INVOLVING CRITICAL GROWTH AND HARDY TERM

Safia Benmansour, Nadjet Yagoub and Atika Matallah

Ecole supérieure de management de Tlemcen, Laboratoire d'analyse et controle des équations aux dérivées partielles, Université Djilali, Liabes Sidi Bel Abbès, Algérie
e-mail: safiabenmansour@hotmail.fr

Laboratoire d'analyse et controle des équations aux dérivées partielles, Université Djilali, Liabes Sidi Bel Abbès, Algérie
e-mail: manadjet222@gmail.com

Ecole supérieure de management de Tlemcen, Laboratoire d'analyse et controle des équations aux dérivées partielles, Université Djilali, Liabes Sidi Bel Abbès, Algérie
e-mail: atika_matallah@yahoo.fr


Abstract.   This paper concerns singular elliptic Kirchhof’s equations whose nonlinearity has a critical growth and contains an inhomogeneous perturbation in a regular bounded domain of R3. To explore the existence of a ground state solution, we rely on various techniques related to variational methods and the Nehari decomposition.

2020 Mathematics Subject Classification.   35J20, 35IJ60, 47J30.

Key words and phrases.   Variational methods, critical growth, Hardy term, singular elliptic problems, Kirchhoff equations.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/m8vqrtgr09


References:

  1. C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85-93.
    MathSciNet     CrossRef

  2. P. D'Ancona and Y. Shibata, On global solvability of nonlinear viscoelastic equations in the analytic category, Math. Methods Appl. Sci. 17 (1994) 477-489.
    MathSciNet     CrossRef

  3. K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc. (2) 48 (1993), 137-151.
    MathSciNet     CrossRef

  4. C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problems with critical exponent functions, J. Differential Equations 250 (2011), 1876-1908.
    MathSciNet     CrossRef

  5. P. Drábek and S. I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 703-726.
    MathSciNet     CrossRef

  6. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
    MathSciNet     CrossRef

  7. D. Kang and Y. Deng, Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev-Hardy, Nonlinear Anal. 60 (2005), 729-753.
    MathSciNet     CrossRef

  8. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

  9. G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré C Anal. Non Linéaire 9 (1992) 281-304.
    MathSciNet     CrossRef


Rad HAZU Home Page