Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 123-131.
BOUNDS FOR CONFLUENT HORN FUNCTION Φ2 DEDUCED BY MCKAY Iν BESSEL LAW
Dragana Jankov Maširević and Tibor K. Pogány
Department of Mathematics, University of Osijek, 31000 Osijek, Croatia
e-mail: djankov@mathos.hr
Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary
Faculty of Maritime Studies, University of Rijeka, 51 000 Rijeka, Croatia
e-mail: pogany.tibor@nik.uni-obuda.hu
e-mail: tibor.poganj@uniri.hr
Abstract. The main aim of this article is to derive by probabilistic
method new functional and uniform bounds for Horn confluent hypergeometric
Φ2 of two variables and the incomplete Lipschitz–Hankel integral,
among others. The main mathematical tools are the representation theorems
for the McKay Iν Bessel probability distribution's CDF and certain
known and less known properties of cumulative distribution functions.
2020 Mathematics Subject Classification.
Primary: 26D15, 26D20, 33C70; Secondary: 33E20, 60E05.
Key words and phrases. Modified Bessel functions of the first kind, McKay Iν Bessel
distribution, confluent Horn Φ2, Φ3 functions, incomplete Lipschitz-Hankel integral,
Marcum Q function, functional bounding inequality.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/9xn31cd8wy
References:
- M. M. Agrest and M. S. Maksimov, Theory of Incomplete Cylindrical Functions and
their Applications, Springer-Verlag, New York, 1971.
MathSciNet
- Á. Baricz, D. Jankov Maširević and T. K. Pogány, Series of Bessel and Kummer-type
Functions, Lecture Notes in Math. 2207, Springer, Cham, 2017.
MathSciNet
CrossRef
- J. Bognár, J. Mogyoródi, A. Prékopa, A. Rényi and D. Szász, Exercises in Probability
Theory, Fourth corrected edition, Typotex Kiadó, Budapest, 2001. (in Hungarian)
- S. S. Bose, On a Bessel function population, Sankhya 3 (1938), No. 3, 253-261.
- Yu. A. Brychkov, On some properties of the Marcum Q function, Integral Transforms
Spec. Funct. 23 (2012), 177-182.
MathSciNet
CrossRef
- Yu. A. Brychkov, D. Jankov Maširević, T. K. Pogány, New expression for CDF of
χ'ν2(λ)
distribution and Marcum Q1 function, Results Math. 77 (2022), No. 3, Paper
No. 102.
MathSciNet
CrossRef
- R. E. Gaunt, Inequalities for integrals of modified Bessel functions and expressions
involving them, J. Math. Anal. Appl. 462 (2018), 172-190.
MathSciNet
CrossRef
- R. E. Gaunt, Inequalities for some integrals involving modified Bessel functions, Proc.
Amer. Math. Soc. 147 (2019), 2937-2951.
MathSciNet
CrossRef
- R. E. Gaunt, Bounds for an integral of the modified Bessel function of the first kind
and expressions involving it, J. Math. Anal. Appl. 502 (2021), No. 1, Paper No. 125216,
16 pp.
MathSciNet
CrossRef
- K. Górska, A. Horzela, D. Jankov Maširević and T. K. Pogány, Observations on the
McKay Iν Bessel distribution, J. Math. Anal. Appl. 516 (2022), No. 1, Paper No.
126481, 14 pp.
MathSciNet
CrossRef
- C. W. Helstrom, Statistical Theory of Signal Detection, Pergamon Press, New York,
1960.
MathSciNet
- D. Jankov Maširević, On new formulas for the cumulative distribution function of the
non-central chi-square distribution, Mediterr. J. Math. 14 (2017), No. 2, Paper No.
66, 13 pp.
MathSciNet
CrossRef
- D. Jankov Maširević and T. K. Pogány, On new formulae for cumulative distribution
function for McKay Bessel distribution, Comm. Statist. Theory Methods 50 (2021),
143-160.
MathSciNet
CrossRef
- A. T. McKay, A Bessel function distribution, Biometrika 24 (1932), No. 1-2, 39-44.
CrossRef
- D. L. McLeish, A robust alternative to the normal distributions, Canadian J. Statist.
10 (1982), 89-102.
MathSciNet
CrossRef
- F. McNolty, Some probability density functions and their characteristic functions,
Math. Comp. 27 (1973), No. 123, 495-504.
MathSciNet
CrossRef
- S. Nadarajah, Some product Bessel density distributions, Taiwanese J. Math. 12
(2008), 191-211.
MathSciNet
CrossRef
- F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Eds.), NIST Handbook
of Mathematical Functions, NIST and Cambridge University Press, Cambridge, 2010.
MathSciNet
- J. F. Paris, E. Martos-Naya, U. Fernández-Plazaola and J. López-Fernández, Analysis
of adaptive MIMO transmit beamforming under channel prediction errors based on
incomplete Lipschitz-Hankel integrals, IEEE Transactions on Vehicular Tehnology 58
(2009), No. 6, 2815-2824.
CrossRef
- K. V. K. Sastry, On a Bessel function of the second kind and Wilks' Z–distribution,
Proc. Indian Acad. Sci. A 28 (1948), 532-536.
MathSciNet
- H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Ser. Math. Appl.,
Ellis Horwood Ltd., Chichester; Halsted Press, New York, 1985.
MathSciNet
Rad HAZU Home Page