Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 123-131.

BOUNDS FOR CONFLUENT HORN FUNCTION Φ2 DEDUCED BY MCKAY Iν BESSEL LAW

Dragana Jankov Maširević and Tibor K. Pogány

Department of Mathematics, University of Osijek, 31000 Osijek, Croatia
e-mail: djankov@mathos.hr

Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary
Faculty of Maritime Studies, University of Rijeka, 51 000 Rijeka, Croatia
e-mail: pogany.tibor@nik.uni-obuda.hu
e-mail: tibor.poganj@uniri.hr


Abstract.   The main aim of this article is to derive by probabilistic method new functional and uniform bounds for Horn confluent hypergeometric Φ2 of two variables and the incomplete Lipschitz–Hankel integral, among others. The main mathematical tools are the representation theorems for the McKay Iν Bessel probability distribution's CDF and certain known and less known properties of cumulative distribution functions.

2020 Mathematics Subject Classification.   Primary: 26D15, 26D20, 33C70; Secondary: 33E20, 60E05.

Key words and phrases.   Modified Bessel functions of the first kind, McKay Iν Bessel distribution, confluent Horn Φ2, Φ3 functions, incomplete Lipschitz-Hankel integral, Marcum Q function, functional bounding inequality.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/9xn31cd8wy


References:

  1. M. M. Agrest and M. S. Maksimov, Theory of Incomplete Cylindrical Functions and their Applications, Springer-Verlag, New York, 1971.
    MathSciNet

  2. Á. Baricz, D. Jankov Maširević and T. K. Pogány, Series of Bessel and Kummer-type Functions, Lecture Notes in Math. 2207, Springer, Cham, 2017.
    MathSciNet     CrossRef

  3. J. Bognár, J. Mogyoródi, A. Prékopa, A. Rényi and D. Szász, Exercises in Probability Theory, Fourth corrected edition, Typotex Kiadó, Budapest, 2001. (in Hungarian)

  4. S. S. Bose, On a Bessel function population, Sankhya 3 (1938), No. 3, 253-261.

  5. Yu. A. Brychkov, On some properties of the Marcum Q function, Integral Transforms Spec. Funct. 23 (2012), 177-182.
    MathSciNet     CrossRef

  6. Yu. A. Brychkov, D. Jankov Maširević, T. K. Pogány, New expression for CDF of χ'ν2(λ) distribution and Marcum Q1 function, Results Math. 77 (2022), No. 3, Paper No. 102.
    MathSciNet     CrossRef

  7. R. E. Gaunt, Inequalities for integrals of modified Bessel functions and expressions involving them, J. Math. Anal. Appl. 462 (2018), 172-190.
    MathSciNet     CrossRef

  8. R. E. Gaunt, Inequalities for some integrals involving modified Bessel functions, Proc. Amer. Math. Soc. 147 (2019), 2937-2951.
    MathSciNet     CrossRef

  9. R. E. Gaunt, Bounds for an integral of the modified Bessel function of the first kind and expressions involving it, J. Math. Anal. Appl. 502 (2021), No. 1, Paper No. 125216, 16 pp.
    MathSciNet     CrossRef

  10. K. Górska, A. Horzela, D. Jankov Maširević and T. K. Pogány, Observations on the McKay Iν Bessel distribution, J. Math. Anal. Appl. 516 (2022), No. 1, Paper No. 126481, 14 pp.
    MathSciNet     CrossRef

  11. C. W. Helstrom, Statistical Theory of Signal Detection, Pergamon Press, New York, 1960.
    MathSciNet

  12. D. Jankov Maširević, On new formulas for the cumulative distribution function of the non-central chi-square distribution, Mediterr. J. Math. 14 (2017), No. 2, Paper No. 66, 13 pp.
    MathSciNet     CrossRef

  13. D. Jankov Maširević and T. K. Pogány, On new formulae for cumulative distribution function for McKay Bessel distribution, Comm. Statist. Theory Methods 50 (2021), 143-160.
    MathSciNet     CrossRef

  14. A. T. McKay, A Bessel function distribution, Biometrika 24 (1932), No. 1-2, 39-44.
    CrossRef

  15. D. L. McLeish, A robust alternative to the normal distributions, Canadian J. Statist. 10 (1982), 89-102.
    MathSciNet     CrossRef

  16. F. McNolty, Some probability density functions and their characteristic functions, Math. Comp. 27 (1973), No. 123, 495-504.
    MathSciNet     CrossRef

  17. S. Nadarajah, Some product Bessel density distributions, Taiwanese J. Math. 12 (2008), 191-211.
    MathSciNet     CrossRef

  18. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Eds.), NIST Handbook of Mathematical Functions, NIST and Cambridge University Press, Cambridge, 2010.
    MathSciNet

  19. J. F. Paris, E. Martos-Naya, U. Fernández-Plazaola and J. López-Fernández, Analysis of adaptive MIMO transmit beamforming under channel prediction errors based on incomplete Lipschitz-Hankel integrals, IEEE Transactions on Vehicular Tehnology 58 (2009), No. 6, 2815-2824.
    CrossRef

  20. K. V. K. Sastry, On a Bessel function of the second kind and Wilks' Z–distribution, Proc. Indian Acad. Sci. A 28 (1948), 532-536.
    MathSciNet

  21. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Ser. Math. Appl., Ellis Horwood Ltd., Chichester; Halsted Press, New York, 1985.
    MathSciNet


Rad HAZU Home Page