Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 111-121.
ARTIN-SCHREIER, ERDŐS, AND KUREPA'S CONJECTURE
Luis H. Gallardo
Univ. Brest, UMR CNRS 6205,
Laboratoire de Mathématiques de Bretagne Atlantique,
F-29238 Brest, France
e-mail: Luis.Gallardo@univ-brest.fr
Abstract. We discuss possible generalizations of Erdŏs's problem
about factorials in Fp to the Artin-Schreier extension
Fpp of Fp. The generalizations
are related to Bell numbers in Fp and to Kurepa's conjecture.
2020 Mathematics Subject Classification.
11T55, 11T06, 11B73, 11B65, 05A10, 12E20, 11A07, 11A25.
Key words and phrases. Artin-Schreier extension, Bell numbers, Erdŏs's problem on
factorials modulo p, Kurepa's conjecture.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/9e31lh6ovm
References:
- M. Aigner, A characterization of the Bell numbers, Discrete Math. 205 (1999), 207-210.
MathSciNet
CrossRef
- V. Andrejić and M. Tatarević, On distinct residues of factorials,
Publ. Inst. Math. (Beograd) (N.S.) 100 (2016), 101-106.
MathSciNet
CrossRef
- V. Andrejić and M. Tatarević, Searching for a counterexample to Kurepa's conjecture,
Math. Comput. 85 (2016), 3061-3068.
MathSciNet
CrossRef
- V. Andrejić, A. Bostan, and M. Tatarević, Improved algorithms for left factorial
residues, Inform. Process. Lett. 167 (2021), Article ID 106078, 4 pp.
MathSciNet
CrossRef
- D. Barsky and B. Benzaghou, Nombres de Bell et somme de factorielles, J. Théor.
Nombres Bordeaux 16 (2004), 1-17.
MathSciNet
- D. Barsky and B. Benzaghou, Erratum à l'article Nombres de Bell et somme de factorielles,
J. Théor. Nombres Bordeaux 23 (2011), 527.
MathSciNet
- H. W. Becker and J. Riordan, The arithmetic of Bell and Stirling numbers, Amer. J.
Math. 70 (1948), 385-394.
MathSciNet
CrossRef
- L. Carlitz, A note on the left factorial function, Math. Balkanica 5 (1975), 37-42.
MathSciNet
- R. E. Dalton and J. Levine, Minimum periods, modulo p, of first order Bell exponential
integers, Math. Comp. 16 (1962), 416-423.
MathSciNet
CrossRef
- M. d'Ocagne, Sur une classe de nombres remarquables, Amer. J. Math. 9 (1887), 353-380.
MathSciNet
CrossRef
- B. Dragović, On some finite sums with factorials, Facta Univ. Ser. Math. Inf. 14
(1999), 1-10.
MathSciNet
- L. H. Gallardo and O. Rahavandrainy, Bell numbers modulo a prime number, traces
and trinomials, Electron. J. Comb. 21 (2014), Research Paper P4.49, 30 pp.
MathSciNet
CrossRef
- A. Ivić and Ž. Mijajlović, On Kurepa's problems in number theory, in: Đuro Kurepa
memorial volume, Publ. Inst. Math. (Beograd) (N.S.) 57 (1995), 19-28.
MathSciNet
- N. Kahale, New modular properties of Bell numbers, J. Combin. Theory Ser. A 58
(1991), 147-152.
MathSciNet
CrossRef
- W. Kohnen, A remark on the left-factorial hypothesis, Univ. Beograd. Publ. Elektrotehn.
Fak. Ser. Mat. 9 (1998), 51-53.
MathSciNet
- Đ. Kurepa, On the left factorial function !n, Math. Balkanica 1 (1971), 147-153.
MathSciNet
- Đ. R. Kurepa, Right and left factorials, in: Conferenze tenuti in occasione del cinquantenario
dell' Unione Matematica Italiana (1972),
Boll. Un. Mat. Ital (4) 9 (1974), no.suppl. fasc. 2, 171-189.
MathSciNet
- Đ. Kurepa, On some new left factorial propositions, Math. Balkanica 4 (1974), 383–
386.
MathSciNet
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics. A foundation
for computer science, Addison-Wesley Publishing Company, Advanced Book Program,
Reading, MA, 1989.
MathSciNet
- R. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 2004.
MathSciNet
CrossRef
- R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl.,
Cambridge University Press, Cambridge, 1996.
MathSciNet
- Ž. Mijajlović, On some formulas involving !n and the verification of the !n-hypothesis
by use of computers, Publ. Inst. Math. (Beograd) (N.S.) 47 (1990), 24-32.
MathSciNet
- Ž. Mijajlović, Fifty years of Kurepa's !n hypothesis, Bull. Cl. Sci. Math. Nat. Sci. Math.
46 (2021), 169-181.
MathSciNet
- P. Montgomery, S. Nahm and S. S. Wagstaff, Jr., The period of the Bell numbers
modulo a prime, Math. Comp. 79 (2010), 1793-1800.
MathSciNet
CrossRef
- A. Petojević, On Kurepa's hypothesis for the left factorial, Filomat 12 (1998), 29-37.
MathSciNet
- A. Petojević and M. Žižović, Trees and the Kurepa hypothesis for left factorial, Filomat
13 (1999), 31-40.
MathSciNet
- A. Petojević, M. Žižović, and S. D. Cvejić, Difference equations and new equivalents
of the Kurepa hypothesis, Math. Morav. 3 (1999), 39-42.
- C. Radoux, Nombres de Bell, modulo p premier, et extensions de degré p de
Fp, C. R.
Acad. Sci. Paris Sér. A-B 281 (1975), A879-A882.
MathSciNet
- C. Radoux, Déterminants de Hankel et théorème de Sylvester, in: Séminaire Lotharangien
de Combinatoire (Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av., Univ. Louis
Pasteur, Strasbourg, Vol. 498, 1992, pp. 115-122.
MathSciNet
- Z. Šami, On generalization of functions n! and !n, Publ. Inst. Math. (Beograd) (N.S.) 60
(1996), 5-14.
MathSciNet
- Z. N. Šami, A sequence un,m and Kurepa’s hypothesis on left factorial, in: Symposium
Dedicated to the Memory of Đuro Kurepa (Belgrade, 1996), Sci. Rev. Ser. Sci. Eng.,
Vol. 19-20, 1996, pp. 105-113.
MathSciNet
- N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, published
electronically at https://oeis.org, 2019.
- I. E. Shparlinskiy, On the distribution of values of recurring sequences and the Bell
numbers in finite fields, European J. Combin. 12 (1991), 81-87.
MathSciNet
CrossRef
- J. Stanković, Über einige Relationen zwischen Fakultäten und den linken Fakultäten,
Math. Balkanica 3 (1973), 488-495.
MathSciNet
- J. Stanković and M. Žižović, Noch einige Relationen zwischen den Fakultäten und den
linken Fakultäten, Math. Balkanica 4 (1974), 555-559.
MathSciNet
- J. Touchard, Nombres exponentiels et nombres de Bernoulli, Canad. J. Math. 8 (1956),
305-320.
MathSciNet
CrossRef
- T. Trudgian, There are no socialist primes less than 109, Integers 14 (2014), Paper
A63, 4 pp.
MathSciNet
CrossRef
- V. S. Vladimirov, Left factorials, Bernoulli numbers, and the Kurepa conjecture, Publ.
Inst. Math. (Beograd) (N.S.) 72 (2002), 11-22.
MathSciNet
CrossRef
- G. T. Williams, Numbers generated by the function
eex-1, Amer. Math. Monthly. 52
(1945), 323-327.
MathSciNet
CrossRef
Rad HAZU Home Page