Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 111-121.

ARTIN-SCHREIER, ERDŐS, AND KUREPA'S CONJECTURE

Luis H. Gallardo

Univ. Brest, UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique, F-29238 Brest, France
e-mail: Luis.Gallardo@univ-brest.fr


Abstract.   We discuss possible generalizations of Erdŏs's problem about factorials in Fp to the Artin-Schreier extension Fpp of Fp. The generalizations are related to Bell numbers in Fp and to Kurepa's conjecture.

2020 Mathematics Subject Classification.   11T55, 11T06, 11B73, 11B65, 05A10, 12E20, 11A07, 11A25.

Key words and phrases.   Artin-Schreier extension, Bell numbers, Erdŏs's problem on factorials modulo p, Kurepa's conjecture.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/9e31lh6ovm


References:

  1. M. Aigner, A characterization of the Bell numbers, Discrete Math. 205 (1999), 207-210.
    MathSciNet     CrossRef

  2. V. Andrejić and M. Tatarević, On distinct residues of factorials, Publ. Inst. Math. (Beograd) (N.S.) 100 (2016), 101-106.
    MathSciNet     CrossRef

  3. V. Andrejić and M. Tatarević, Searching for a counterexample to Kurepa's conjecture, Math. Comput. 85 (2016), 3061-3068.
    MathSciNet     CrossRef

  4. V. Andrejić, A. Bostan, and M. Tatarević, Improved algorithms for left factorial residues, Inform. Process. Lett. 167 (2021), Article ID 106078, 4 pp.
    MathSciNet     CrossRef

  5. D. Barsky and B. Benzaghou, Nombres de Bell et somme de factorielles, J. Théor. Nombres Bordeaux 16 (2004), 1-17.
    MathSciNet

  6. D. Barsky and B. Benzaghou, Erratum à l'article Nombres de Bell et somme de factorielles, J. Théor. Nombres Bordeaux 23 (2011), 527.
    MathSciNet

  7. H. W. Becker and J. Riordan, The arithmetic of Bell and Stirling numbers, Amer. J. Math. 70 (1948), 385-394.
    MathSciNet     CrossRef

  8. L. Carlitz, A note on the left factorial function, Math. Balkanica 5 (1975), 37-42.
    MathSciNet

  9. R. E. Dalton and J. Levine, Minimum periods, modulo p, of first order Bell exponential integers, Math. Comp. 16 (1962), 416-423.
    MathSciNet     CrossRef

  10. M. d'Ocagne, Sur une classe de nombres remarquables, Amer. J. Math. 9 (1887), 353-380.
    MathSciNet     CrossRef

  11. B. Dragović, On some finite sums with factorials, Facta Univ. Ser. Math. Inf. 14 (1999), 1-10.
    MathSciNet

  12. L. H. Gallardo and O. Rahavandrainy, Bell numbers modulo a prime number, traces and trinomials, Electron. J. Comb. 21 (2014), Research Paper P4.49, 30 pp.
    MathSciNet     CrossRef

  13. A. Ivić and Ž. Mijajlović, On Kurepa's problems in number theory, in: Đuro Kurepa memorial volume, Publ. Inst. Math. (Beograd) (N.S.) 57 (1995), 19-28.
    MathSciNet

  14. N. Kahale, New modular properties of Bell numbers, J. Combin. Theory Ser. A 58 (1991), 147-152.
    MathSciNet     CrossRef

  15. W. Kohnen, A remark on the left-factorial hypothesis, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 9 (1998), 51-53.
    MathSciNet

  16. Đ. Kurepa, On the left factorial function !n, Math. Balkanica 1 (1971), 147-153.
    MathSciNet

  17. Đ. R. Kurepa, Right and left factorials, in: Conferenze tenuti in occasione del cinquantenario dell' Unione Matematica Italiana (1972), Boll. Un. Mat. Ital (4) 9 (1974), no.suppl. fasc. 2, 171-189.
    MathSciNet

  18. Đ. Kurepa, On some new left factorial propositions, Math. Balkanica 4 (1974), 383– 386.
    MathSciNet

  19. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics. A foundation for computer science, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989.
    MathSciNet

  20. R. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 2004.
    MathSciNet     CrossRef

  21. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., Cambridge University Press, Cambridge, 1996.
    MathSciNet

  22. Ž. Mijajlović, On some formulas involving !n and the verification of the !n-hypothesis by use of computers, Publ. Inst. Math. (Beograd) (N.S.) 47 (1990), 24-32.
    MathSciNet

  23. Ž. Mijajlović, Fifty years of Kurepa's !n hypothesis, Bull. Cl. Sci. Math. Nat. Sci. Math. 46 (2021), 169-181.
    MathSciNet

  24. P. Montgomery, S. Nahm and S. S. Wagstaff, Jr., The period of the Bell numbers modulo a prime, Math. Comp. 79 (2010), 1793-1800.
    MathSciNet     CrossRef

  25. A. Petojević, On Kurepa's hypothesis for the left factorial, Filomat 12 (1998), 29-37.
    MathSciNet

  26. A. Petojević and M. Žižović, Trees and the Kurepa hypothesis for left factorial, Filomat 13 (1999), 31-40.
    MathSciNet

  27. A. Petojević, M. Žižović, and S. D. Cvejić, Difference equations and new equivalents of the Kurepa hypothesis, Math. Morav. 3 (1999), 39-42.

  28. C. Radoux, Nombres de Bell, modulo p premier, et extensions de degré p de Fp, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), A879-A882.
    MathSciNet

  29. C. Radoux, Déterminants de Hankel et théorème de Sylvester, in: Séminaire Lotharangien de Combinatoire (Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av., Univ. Louis Pasteur, Strasbourg, Vol. 498, 1992, pp. 115-122.
    MathSciNet

  30. Z. Šami, On generalization of functions n! and !n, Publ. Inst. Math. (Beograd) (N.S.) 60 (1996), 5-14.
    MathSciNet

  31. Z. N. Šami, A sequence un,m and Kurepa’s hypothesis on left factorial, in: Symposium Dedicated to the Memory of Đuro Kurepa (Belgrade, 1996), Sci. Rev. Ser. Sci. Eng., Vol. 19-20, 1996, pp. 105-113.
    MathSciNet

  32. N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2019.

  33. I. E. Shparlinskiy, On the distribution of values of recurring sequences and the Bell numbers in finite fields, European J. Combin. 12 (1991), 81-87.
    MathSciNet     CrossRef

  34. J. Stanković, Über einige Relationen zwischen Fakultäten und den linken Fakultäten, Math. Balkanica 3 (1973), 488-495.
    MathSciNet

  35. J. Stanković and M. Žižović, Noch einige Relationen zwischen den Fakultäten und den linken Fakultäten, Math. Balkanica 4 (1974), 555-559.
    MathSciNet

  36. J. Touchard, Nombres exponentiels et nombres de Bernoulli, Canad. J. Math. 8 (1956), 305-320.
    MathSciNet     CrossRef

  37. T. Trudgian, There are no socialist primes less than 109, Integers 14 (2014), Paper A63, 4 pp.
    MathSciNet     CrossRef

  38. V. S. Vladimirov, Left factorials, Bernoulli numbers, and the Kurepa conjecture, Publ. Inst. Math. (Beograd) (N.S.) 72 (2002), 11-22.
    MathSciNet     CrossRef

  39. G. T. Williams, Numbers generated by the function eex-1, Amer. Math. Monthly. 52 (1945), 323-327.
    MathSciNet     CrossRef


Rad HAZU Home Page