Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 87-109.

A GEOMETRIC APPROACH TO ELLIPTIC CURVES WITH TORSION GROUPS Z/10Z, Z/12Z, Z/14Z, and Z/16Z

Lorenz Halbeisen, Norbert Hungerbühler, Arman Shamsi Zargar and Maksym Voznyy

Department of Mathematics, ETH Zentrum Rämistrasse 101, 8092 Zürich, Switzerland
e-mail: lorenz.halbeisen@math.ethz.ch

Department of Mathematics, ETH Zentrum Rämistrasse 101, 8092 Zürich, Switzerland
e-mail: norbert.hungerbuehler@math.ethz.ch

Department of Mathematics and Applications, University of Mohaghegh Ardabili, Ardabil, Iran
e-mail: zargar@uma.ac.ir

Department of Technology, Stephen Leacock CI, Toronto District School Board, Toronto, Canada
e-mail: maksym.voznyy@tdsb.on.ca


Abstract.   We give new parametrisations of elliptic curves in Weierstrass normal form y2 = x3 + ax2 + bx with torsion groups Z/10Z and Z/12Z over Q, and with Z/14Z and Z/16Z over quadratic fields. Even though the parametrisations are equivalent to those given by Kubert and Rabarison, respectively, with the new parametrisations we found three infinite families of elliptic curves with torsion group Z/12Z and positive rank. Furthermore, we found elliptic curves with torsion group Z/14Z and rank 3 - which is a new record for such curves - as well as some new elliptic curves with torsion group Z/16Z and rank 3.

2020 Mathematics Subject Classification.   11G05, 14H52.

Key words and phrases.   Elliptic curve, parametrisation, quadratic field, rank, torsion group.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ydkx2coje9


References:

  1. J. Aguirre, A. Dujella, M. Jukić Bokun and J. C. Peral, High rank elliptic curves with prescribed torsion group over quadratic fields, Period. Math. Hungar. 68 (2014), 222-230.
    MathSciNet     CrossRef

  2. A. Dujella, High rank elliptic curves with prescribed torsion, https://web.math.pmf.unizg.hr/∼duje/tors/tors.html. Accessed: 2022-05-18.

  3. A. Dujella, High rank elliptic curves with prescribed torsion over quadratic fields, https://web.math.pmf.unizg.hr/∼duje/tors/torsquad.html. Accessed: 2022-05-18.

  4. A. Dujella, Number Theory, Školska knjiga, Zagreb, 2021.
    MathSciNet

  5. L. Halbeisen and N. Hungerbühler, Constructing cubic curves with involutions, Beitr. Algebra Geom. 63 (2022), 921-940.
    MathSciNet     CrossRef

  6. D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. Lond. Math. Soc. (3) 33 (1976), 193-237.
    MathSciNet     CrossRef

  7. L. Kulesz, Courbes elliptiques de rang élevé, possédant un sous-groupe de torsion non trivial sur Q, preprint, 2003, (article provided by Andrej Dujella).

  8. L. Kulesz, Families of elliptic curves of high rank with nontrivial torsion group over Q, Acta Arith. 108 (2003), 339-356.
    MathSciNet     CrossRef

  9. P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comp. 48 (1987), no.177, 243-264.
    MathSciNet     CrossRef

  10. F. Najman, Some rank records for elliptic curves with prescribed torsion over quadratic fields, An. Stiint. "Ovidius" Constanta. Ser. Mat. 22 (2014), 215–219.
    MathSciNet     CrossRef

  11. F. P. Rabarison, Construction of elliptic curves with high rank and large torsion group, preprint, 2010, (article provided by Andrej Dujella).

  12. F. P. Rabarison, Structure de torsion des courbes elliptiques sur les corps quadratiques, Acta Arith. 144 (2010), 17-52.
    MathSciNet     CrossRef

  13. H. Schroeter, Die Theorie der ebenen Curven dritter Ordnung, B. G. Teubner, Leipzig, 1888.

  14. L. C. Washington, Elliptic Curves. Number Theory and Cryptography, CRC Press, Taylor & Francis Group, Boca Raton, 2nd edition, 2008.
    MathSciNet     CrossRef


Rad HAZU Home Page