Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 87-109.
A GEOMETRIC APPROACH TO ELLIPTIC CURVES WITH TORSION GROUPS
Z/10Z, Z/12Z,
Z/14Z, and Z/16Z
Lorenz Halbeisen, Norbert Hungerbühler, Arman Shamsi Zargar
and Maksym Voznyy
Department of Mathematics, ETH Zentrum Rämistrasse 101,
8092 Zürich, Switzerland
e-mail: lorenz.halbeisen@math.ethz.ch
Department of Mathematics, ETH Zentrum Rämistrasse 101,
8092 Zürich, Switzerland
e-mail: norbert.hungerbuehler@math.ethz.ch
Department of Mathematics and Applications, University of Mohaghegh Ardabili,
Ardabil, Iran
e-mail: zargar@uma.ac.ir
Department of Technology, Stephen Leacock CI, Toronto District School Board,
Toronto, Canada
e-mail: maksym.voznyy@tdsb.on.ca
Abstract. We give new parametrisations of elliptic curves in Weierstrass
normal form y2 = x3 + ax2 + bx with torsion groups
Z/10Z and
Z/12Z over Q, and with Z/14Z and Z/16Z over quadratic fields. Even
though the parametrisations are equivalent to those given by Kubert and
Rabarison, respectively, with the new parametrisations we found three infinite
families of elliptic curves with torsion group Z/12Z and positive
rank. Furthermore, we found elliptic curves with torsion group Z/14Z and
rank 3 - which is a new record for such curves - as well as some new elliptic
curves with torsion group Z/16Z and rank 3.
2020 Mathematics Subject Classification.
11G05, 14H52.
Key words and phrases. Elliptic curve, parametrisation, quadratic field, rank, torsion group.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ydkx2coje9
References:
- J. Aguirre, A. Dujella, M. Jukić Bokun and J. C. Peral, High rank elliptic curves with
prescribed torsion group over quadratic fields, Period. Math. Hungar. 68 (2014), 222-230.
MathSciNet
CrossRef
- A. Dujella, High rank elliptic curves with prescribed torsion,
https://web.math.pmf.unizg.hr/∼duje/tors/tors.html.
Accessed: 2022-05-18.
- A. Dujella, High rank elliptic curves with prescribed torsion over quadratic fields,
https://web.math.pmf.unizg.hr/∼duje/tors/torsquad.html.
Accessed: 2022-05-18.
- A. Dujella, Number Theory, Školska knjiga, Zagreb, 2021.
MathSciNet
- L. Halbeisen and N. Hungerbühler, Constructing cubic curves with involutions,
Beitr. Algebra Geom. 63 (2022), 921-940.
MathSciNet
CrossRef
- D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. Lond. Math.
Soc. (3) 33 (1976), 193-237.
MathSciNet
CrossRef
- L. Kulesz, Courbes elliptiques de rang élevé, possédant un sous-groupe de torsion non
trivial sur Q, preprint, 2003, (article provided by Andrej Dujella).
- L. Kulesz, Families of elliptic curves of high rank with nontrivial torsion group over Q,
Acta Arith. 108 (2003), 339-356.
MathSciNet
CrossRef
- P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization,
Math. Comp. 48 (1987), no.177, 243-264.
MathSciNet
CrossRef
- F. Najman, Some rank records for elliptic curves with prescribed torsion over quadratic
fields, An. Stiint. "Ovidius" Constanta. Ser. Mat. 22 (2014), 215–219.
MathSciNet
CrossRef
- F. P. Rabarison, Construction of elliptic curves with high rank and large torsion group,
preprint, 2010, (article provided by Andrej Dujella).
- F. P. Rabarison, Structure de torsion des courbes elliptiques sur les corps quadratiques,
Acta Arith. 144 (2010), 17-52.
MathSciNet
CrossRef
- H. Schroeter, Die Theorie der ebenen Curven dritter Ordnung, B. G. Teubner, Leipzig,
1888.
- L. C. Washington, Elliptic Curves. Number Theory and Cryptography, CRC Press,
Taylor & Francis Group, Boca Raton, 2nd edition, 2008.
MathSciNet
CrossRef
Rad HAZU Home Page