Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 71-79.
SOLUTIONS OF THE MARKOFF EQUATION IN TRIBONACCI NUMBERS
Hayder R. Hashim
Faculty of Computer Science and Mathematics, University of Kufa,
P. O. Box 400, 54001 Al Najaf, Iraq
e-mail: hayderr.almuswi@uokufa.edu.iq
Abstract. In this paper, we determine all of the positive integer
solutions of the so-called Markoff equation
x2 + y2 + z2 = 3xyz in the
sequence of Tribonacci numbers {Tn}, i.e. (x, y, z)
= (Ti, Tj, Tk) such that
i, j, k ≥ 2.
2020 Mathematics Subject Classification.
11D25, 11B83.
Key words and phrases. Tribonacci numbers, Diophantine equations, Markoff equation.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yq32ohx069
References:
- C. Baer and G. Rosenberger, The equation ax2 + by2 + cz2 = dxyz
over quadratic imaginary fields, Results Math. 33 (1998), 30-39.
MathSciNet
CrossRef
- A. Baragar and K. Umeda, The asymptotic growth of integer solutions to the Rosenberger
equations, Bull. Austral. Math. Soc. 69 (2004), 481-497.
MathSciNet
CrossRef
- E. F. Bravo and J. J. Bravo, Tribonacci numbers with two blocks of repdigits, Math.
Slovaca 71 (2021), 267-274.
MathSciNet
CrossRef
- E. González-Jiménez, Markoff-Rosenberger triples in geometric progression,
Acta Math. Hungar. 142 (2014), 231-243.
MathSciNet
CrossRef
- H. R. Hashim and Sz. Tengely, Solutions of a generalized Markoff equation in Fibonacci
numbers, Math. Slovaca 70 (2020), 1069-1078.
MathSciNet
CrossRef
- H. R. Hashim, Sz. Tengely and L. Szalay, Markoff-Rosenberger triples and generalized
Lucas sequences, Period. Math. Hungar. 85 (2022), 188-202.
MathSciNet
CrossRef
- S. Hu and Y. Li, The number of solutions of generalized Markoff-Hurwitz-type equations
over finite fields, J. Zhejiang Univ. Sci. Ed. 44 (2017),
516-519, 537.
MathSciNet
- A. Hurwitz, Über eine Aufgabe der unbestimmten Analyse, Archiv der Mathematik
und Physik. 3. Reihe 11 (1907), 185-196.
- Y. Jin and A. L. Schmidt, A Diophantine equation appearing in Diophantine approximation,
Indag. Math. (N.S.) 12 (2001), 477-482.
MathSciNet
CrossRef
- B. Kafle, A. Srinivasan and A. Togbé, Markoff equation with Pell component,
Fibonacci Quart. 58 (2020), 226-230.
MathSciNet
- F. Luca and A. Srinivasan, Markov equation with Fibonacci components,
Fibonacci Quart. 56 (2018), 126-129.
MathSciNet
- A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann.
15 (1879), 381-407.
CrossRef
- A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann.
17 (1880), no.3, 379-400.
MathSciNet
CrossRef
- G. Rosenberger, Über die Diophantische Gleichung ax2 + by2 + cz2 = dxyz,
J. Reine Angew. Math. 305 (1979), 122-125.
MathSciNet
CrossRef
- W. R. Spickerman, Binet's formula for the Tribonacci sequence, Fibonacci Quart.
20 (1982), 118-120.
MathSciNet
- A. Srinivasan, The Markoff-Fibonacci numbers, Fibonacci Quart. 58 (2020),
222-228.
MathSciNet
- W. A. Stein and others, Sage Mathematics Software (Version 9.0). The Sage Development
Team, http://www.sagemath.org, 2020.
- Sz. Tengely, Markoff-Rosenberger triples with Fibonacci components,
Glas. Mat. Ser. III 55(75) (2020), 29-36.
MathSciNet
CrossRef
Rad HAZU Home Page