Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 55-70.
TRIANGULAR DIOPHANTINE TUPLES FROM {1, 2}
Alan Filipin and László Szalay
Faculty of Civil Engineering, University of Zagreb,
Kačićeva 26, 10 000 Zagreb, Croatia
e-mail: alan.filipin@grad.unizg.hr
Institute of Informatics and Mathematics,
University of Sopron, Bajcsy Zs. u. 4., Sopron 9400, Hungary
Department of Mathematics, J. Selye University,
Hradná str. 21, Komárno 945 01, Slovakia
e-mail: szalay.laszlo@uni-sopron.hu
Abstract. In this paper, we prove that there does not exist a set of
four positive integers {1, 2, c, d} such that a product of any two of them
increased by 1 is a triangular number.
2020 Mathematics Subject Classification.
11D09, 11B37, 11J86.
Key words and phrases. Diophantine m-tuples, Pell equations, linear forms in logarithms.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ygjwrcp48y
References:
- A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew.
Math. 442 (1993), 19-62.
MathSciNet
CrossRef
- A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart.
J. Math. Oxford Ser. (2) 49 (1998), 291-306.
MathSciNet
CrossRef
- A. Dujella, Diophantine m-tuples,
https://web.math.pmf.unizg.hr/~duje/dtuples.html.
- B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math.
Soc. 371 (2019), 6665-6709.
MathSciNet
CrossRef
- T. Nagell, Introduction to Number Theory, Almqvist, Stockholm; Wiley, New York,
1951.
MathSciNet
- The PARI Group, PARI/GP, version 2.9.3, Bordeaux, 2017, available from
http://pari.math.u-bordeaux.fr/.
- L. Szalay, On the resolution of simultaneous Pell equations, Ann. Math. Inform. 34
(2007), 77-87.
MathSciNet
Rad HAZU Home Page