Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 55-70.

TRIANGULAR DIOPHANTINE TUPLES FROM {1, 2}

Alan Filipin and László Szalay

Faculty of Civil Engineering, University of Zagreb, Kačićeva 26, 10 000 Zagreb, Croatia
e-mail: alan.filipin@grad.unizg.hr

Institute of Informatics and Mathematics, University of Sopron, Bajcsy Zs. u. 4., Sopron 9400, Hungary
Department of Mathematics, J. Selye University, Hradná str. 21, Komárno 945 01, Slovakia
e-mail: szalay.laszlo@uni-sopron.hu


Abstract.   In this paper, we prove that there does not exist a set of four positive integers {1, 2, c, d} such that a product of any two of them increased by 1 is a triangular number.

2020 Mathematics Subject Classification.   11D09, 11B37, 11J86.

Key words and phrases.   Diophantine m-tuples, Pell equations, linear forms in logarithms.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ygjwrcp48y


References:

  1. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
    MathSciNet     CrossRef

  2. A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
    MathSciNet     CrossRef

  3. A. Dujella, Diophantine m-tuples, https://web.math.pmf.unizg.hr/~duje/dtuples.html.

  4. B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.
    MathSciNet     CrossRef

  5. T. Nagell, Introduction to Number Theory, Almqvist, Stockholm; Wiley, New York, 1951.
    MathSciNet

  6. The PARI Group, PARI/GP, version 2.9.3, Bordeaux, 2017, available from http://pari.math.u-bordeaux.fr/.

  7. L. Szalay, On the resolution of simultaneous Pell equations, Ann. Math. Inform. 34 (2007), 77-87.
    MathSciNet


Rad HAZU Home Page