Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 31-53.

ON THE NUMBER OF TERMS OF SOME FAMILIES OF THE TERNARY CYCLOTOMIC POLYNOMIALS Φ3p2p3

Ala'a Al-Kateeb and Afnan Dagher

Department of Mathematics, Yarmouk University, Jordan
e-mail: alaa.kateeb@yu.edu.jo
e-mail: afnand@yu.edu.jo


Abstract.   We study the number of non-zero terms in two specific families of ternary cyclotomic polynomials. We find formulas for the number of terms by writing the cyclotomic polynomial as a sum of smaller sub-polynomials and study the properties of these polynomials.

2020 Mathematics Subject Classification.   11B83.

Key words and phrases.   Number of terms, cyclotomic polynomials, maximum gap.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/mjrl3ug1v9


References:

  1. A. Al-Kateeb, Structures and properties of cyclotomic polynomials, PhD thesis, North Carolina State University, 2016.
    MathSciNet

  2. A. Al-Kateeb, On the height of cyclotomic polynomials, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 110 (2019), 101-106.
    MathSciNet

  3. A. Al-Kateeb, M. Ambrosino, H. Hong and E. Lee, Maximum gap in cyclotomic polynomials, J. Number Theory 229 (2021), 1-15.
    MathSciNet     CrossRef

  4. A. Al-Kateeb, H. Hong and E. Lee, Block structure of cyclotomic polynomials, preprint, arXiv:1704.04051v2.

  5. G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number Theory 100 (2003), 104-116.
    MathSciNet     CrossRef

  6. M. Beiter, Magnitude of the coefficients of the cyclotomic polynomial Fpqr(x), Amer. Math. Monthly 75 (1968), 370-372.
    MathSciNet     CrossRef

  7. B. Bzdega, Bounds on ternary cyclotomic coefficients, Acta Arith. 144 (2010), 5-16.
    MathSciNet     CrossRef

  8. B. Bzdega, Jumps of ternary cyclotomic coefficients, Acta Arith. 163 (2014), 203-213.
    MathSciNet     CrossRef

  9. L. Carlitz, The number of terms in the cyclotomic polynomial Fpq(x), Amer. Math. Monthly 73 (1966), 979-981.
    MathSciNet     CrossRef

  10. S. Elder, Flat cyclotomic polynomials: A new approach, preprint, arXiv:1207.5811v1 [math.NT].

  11. Y. Gallot and P. Moree, Neighboring ternary cyclotomic polynomials coefficients differ by at most one, J. Ramanujan Math. Soc. 24 (2009), 235-248.
    MathSciNet

  12. Y. Gallot, P. Moree and H. Hommersom, Value distribution of coefficients of cyclotomic polynomials, Unif. Distrib. Theory 6 (2011), 177-206.
    MathSciNet

  13. Y. Gallot, P. Moree and R. Wilms, The family of ternary cyclotomic polynomials with one free prime, Involve 4 (2011), 317-341.
    MathSciNet     CrossRef

  14. H. Hong, E. Lee, H.-S. Lee and C.-M. Park, Maximum gap in (inverse) cyclotomic polynomial, J. Number Theory 132 (2012), 2297-2317.
    MathSciNet     CrossRef

  15. N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118-126.
    MathSciNet     CrossRef

  16. N. Kaplan, Flat cyclotomic polynomials of order four and higher, Integers 10 (2010), A30, 357-363.
    MathSciNet     CrossRef

  17. P. Moree, Inverse cyclotomic polynomials, J. Number Theory 129 (2009), 667-680.
    MathSciNet     CrossRef

  18. P. Moree, Numerical semigroups, cyclotomic polynomials, and Bernoulli numbers, Amer. Math. Monthly 121 (2014), 890-902.
    MathSciNet     CrossRef

  19. P. Moree and E. Rosu, Non-Beiter ternary cyclotomic polynomials with an optimally large set of coefficients, Int. J. Number Theory 8 (2012), 1883-1902.
    MathSciNet     CrossRef

  20. C. Sanna, A survey on coefficients of cyclotomic polynomials, Expo. Math. 40 (2022), 469-494.
    MathSciNet     CrossRef

  21. B. Zhang, Remarks on the maximum gap in binary cyclotomic polynomials, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 59 (2016), 109-115.
    MathSciNet

  22. B. Zhang, Remarks on the flatness of ternary cyclotomic, Int. J. Number Theory 13 (2017), 529-547.
    MathSciNet     CrossRef


Rad HAZU Home Page