Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 31-53.
ON THE NUMBER OF TERMS OF SOME FAMILIES OF THE TERNARY CYCLOTOMIC POLYNOMIALS Φ3p2p3
Ala'a Al-Kateeb and Afnan Dagher
Department of Mathematics,
Yarmouk University, Jordan
e-mail: alaa.kateeb@yu.edu.jo
e-mail: afnand@yu.edu.jo
Abstract. We study the number of non-zero terms in two specific
families of ternary cyclotomic polynomials. We find formulas for the number
of terms by writing the cyclotomic polynomial as a sum of smaller
sub-polynomials and study the properties of these polynomials.
2020 Mathematics Subject Classification.
11B83.
Key words and phrases. Number of terms, cyclotomic polynomials, maximum gap.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/mjrl3ug1v9
References:
- A. Al-Kateeb, Structures and properties of cyclotomic polynomials, PhD thesis, North
Carolina State University, 2016.
MathSciNet
- A. Al-Kateeb, On the height of cyclotomic polynomials, Bull. Math. Soc. Sci. Math.
Roumanie (N.S.) 110 (2019), 101-106.
MathSciNet
- A. Al-Kateeb, M. Ambrosino, H. Hong and E. Lee, Maximum gap in cyclotomic polynomials,
J. Number Theory 229 (2021), 1-15.
MathSciNet
CrossRef
- A. Al-Kateeb, H. Hong and E. Lee, Block structure of cyclotomic polynomials,
preprint, arXiv:1704.04051v2.
- G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number Theory
100 (2003), 104-116.
MathSciNet
CrossRef
- M. Beiter, Magnitude of the coefficients of the cyclotomic polynomial Fpqr(x), Amer.
Math. Monthly 75 (1968), 370-372.
MathSciNet
CrossRef
- B. Bzdega, Bounds on ternary cyclotomic coefficients, Acta Arith. 144 (2010), 5-16.
MathSciNet
CrossRef
- B. Bzdega, Jumps of ternary cyclotomic coefficients, Acta Arith. 163 (2014), 203-213.
MathSciNet
CrossRef
- L. Carlitz, The number of terms in the cyclotomic polynomial Fpq(x), Amer. Math.
Monthly 73 (1966), 979-981.
MathSciNet
CrossRef
- S. Elder, Flat cyclotomic polynomials: A new approach, preprint, arXiv:1207.5811v1 [math.NT].
- Y. Gallot and P. Moree, Neighboring ternary cyclotomic polynomials coefficients differ
by at most one, J. Ramanujan Math. Soc. 24 (2009), 235-248.
MathSciNet
- Y. Gallot, P. Moree and H. Hommersom, Value distribution of coefficients of cyclotomic
polynomials, Unif. Distrib. Theory 6 (2011), 177-206.
MathSciNet
- Y. Gallot, P. Moree and R. Wilms, The family of ternary cyclotomic polynomials with
one free prime, Involve 4 (2011), 317-341.
MathSciNet
CrossRef
- H. Hong, E. Lee, H.-S. Lee and C.-M. Park, Maximum gap in (inverse) cyclotomic
polynomial, J. Number Theory 132 (2012), 2297-2317.
MathSciNet
CrossRef
- N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007),
118-126.
MathSciNet
CrossRef
- N. Kaplan, Flat cyclotomic polynomials of order four and higher, Integers 10 (2010),
A30, 357-363.
MathSciNet
CrossRef
- P. Moree, Inverse cyclotomic polynomials, J. Number Theory 129 (2009), 667-680.
MathSciNet
CrossRef
- P. Moree, Numerical semigroups, cyclotomic polynomials, and Bernoulli numbers,
Amer. Math. Monthly 121 (2014), 890-902.
MathSciNet
CrossRef
- P. Moree and E. Rosu, Non-Beiter ternary cyclotomic polynomials with an optimally
large set of coefficients, Int. J. Number Theory 8 (2012), 1883-1902.
MathSciNet
CrossRef
- C. Sanna, A survey on coefficients of cyclotomic polynomials, Expo. Math. 40 (2022),
469-494.
MathSciNet
CrossRef
- B. Zhang, Remarks on the maximum gap in binary cyclotomic polynomials, Bull.
Math. Soc. Sci. Math. Roumanie (N.S.) 59 (2016), 109-115.
MathSciNet
- B. Zhang, Remarks on the flatness of ternary cyclotomic, Int. J. Number Theory 13
(2017), 529-547.
MathSciNet
CrossRef
Rad HAZU Home Page