Rad HAZU, Matematičke znanosti, Vol. 27 (2023), 11-30.

CONSTRUCTING FLAG-TRANSITIVE INCIDENCE STRUCTURES

Snježana Braić, Joško Mandić, Aljoša Šubašić and Tanja Vojković

Faculty of Science, University of Split, 21 000 Split, Croatia
e-mail: sbraic@pmfst.hr
e-mail: majo@pmfst.hr
e-mail: aljsub@pmfst.hr
e-mail: tanja@pmfst.hr


Abstract.   The aim of this research is to develop efficient techniques to construct flag-transitive incidence structures. In this paper we describe those techniques, present the construction results and take a closer look at how some types of flag-transitive incidence structures relate to arctransitive graphs.

2020 Mathematics Subject Classification.   05B05, 20B25.

Key words and phrases.   Incidence structures, flag-transitivity, automorphism groups, arc-transitive graphs.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/m3v76t5g2y


References:

  1. M. Aschbacher, Finite geometries of type C3 with flag-transitive groups, Geom. Dedicata 16 (1984), 195-200.
    MathSciNet     CrossRef

  2. L. M. Batten and A. Beutelspacher, The Theory of Finite Linear Spaces, Cambridge University Press, Cambridge, 1992.
    MathSciNet     CrossRef

  3. W. Bosma, J. J. Cannon, C. Fieker and A. Steel (eds.), Handbook of Magma functions, Edition 2:16, 2010 (electronic).

  4. S. Braić, J. Mandić and T. Vučičić, Flag-transitive block designs with automorphism group Sn wr S2, Discrete Math. 341 (2018), 2220-2230.
    MathSciNet     CrossRef

  5. S. Braić, J. Mandić, A. Šubašić, T. Vojković and T. Vučičić, Groups Sn × Sm in construction of flag-transitive block designs, Glas. Mat. Ser. III 56(76) (2021), 225-240.
    MathSciNet     CrossRef

  6. F. Buekenhout, A. Delandtsheer and J. Doyen, Finite linear spaces with flag-transitive groups, J. Combin. Theory Ser. A. 49 (1988), 268-293.
    MathSciNet     CrossRef

  7. C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971), 247-256.
    MathSciNet     CrossRef

  8. Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B. 42 (1987), 196-211.
    MathSciNet     CrossRef

  9. M. D. Conder, A. Malnič, D. Marušič and P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin. 23 (2006), 255-294.
    MathSciNet     CrossRef

  10. M. D. Conder, and M. Morton, Classification of trivalent symmetric graphs of small order, Australas. J. Combin. 11 (1995), 139-150.
    MathSciNet

  11. M. D. Conder, and R. Nedela, A refined classification of symmetric cubic graphs, J. Algebra 322 (2009), 722-740.
    MathSciNet     CrossRef

  12. M. D. Conder, and G. Verret, Edge-transitive graphs of small order and the answer to a 1967 question by Folkman, Algebr. Comb. 2 (2019), 1275-1284.
    MathSciNet     CrossRef

  13. J. Conway, and A. Ryba, The Pascal mysticum demystified, Math. Intelligencer 34 (2012), no.3, 4-8.
    MathSciNet     CrossRef

  14. H. S. Coxeter, Self-dual configurations and regular graphs, Bull. Amer. Math. Soc. 56 (1950), 413-455.
    MathSciNet     CrossRef

  15. D. Z. Djokovic and G. L. Miller, Groups Acting on Regular Graphs and Group Amalgams, in: Technical Report TR24, University of Rochester, Department of Computer Science, Rochester, 1978.

  16. C. Godsil and G. Royle, Arc-Transitive Graphs, in: Algebraic Graph Theory, Springer, New York, 2001.
    MathSciNet     CrossRef

  17. H. Gropp, Configurations and their realization, Discrete Math. 174 (1997), 137-151.
    MathSciNet     CrossRef

  18. https://mapmf.pmfst.unist.hr/~sbraic/BFTIS/

  19. F. W. Levi, Finite geometrical systems: six public lectures, University of Calcutta, Calcutta, 1942.
    MathSciNet

  20. P. Potočnik and S. E. Wilson, Recipes for edge-transitive tetravalent graphs, Art Discrete Appl. Math. 3(1) (2020), Paper No. 1.08.
    MathSciNet     CrossRef

  21. C. E. Praeger, R. J. Wang and M. Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B. 58 (1993), 299-318.
    MathSciNet     CrossRef

  22. C. E. Praeger and M. Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B. 59 (1993), 245-266.
    MathSciNet     CrossRef

  23. T. Reye, Geometrie der Lage I. 2nd ed., C. Rumpler, Hannover, 1877.

  24. T. Reye, Das Problem der Configurationen, Acta Math. 1(1) (1882), 93-96.
    MathSciNet     CrossRef

  25. J. De Saedeleer, D. Leemans, M. Mixer and T. Pisanski, Core-free, rank two coset geometries from edge-transitive bipartite graphs, Math. Slovaca 64 (2014), 991-1006.
    MathSciNet     CrossRef

  26. J. Tits, Les groupes de Lie exceptionnels et leur interprétation géométrique, Bull. Soc. Math. Belg. 8 (1956), 46-81.
    MathSciNet

  27. R. J. Wang and M. Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B. 58 (1993), 197-216.
    MathSciNet     CrossRef

  28. P.-H. Zieschang, Flag transitive automorphism groups of 2-designs with (r, λ) = 1, J. Algebra 118 (1988), 369-375.
    MathSciNet     CrossRef


Rad HAZU Home Page