Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 201-227.

MATHEMATICAL ANALYSIS OF A MODEL FOR CHRONIC MYELOID LEUKEMIA

Fatima Zohra Elouchdi Derrar, Djamila Benmerzouk and Bedr'Eddine Ainesba

Department of Mathematics, Tlemcen University, BP 119, 13000 Tlemcen, Algeria
e-mail: derrar_fz@yahoo.fr
e-mail: d_benmerzouk@yahoo.fr

Bordeaux Mathematics Institute, UMR CNRS 52 51, Case 36, Université Victor Segalen Bordeaux 2,3 ter place de la victoire, F 33076 Bordeaux Cedex, France
e-mail: Bedreddine.ainseba@u-bordeaux.fr


Abstract.   In this paper, a mathematical analysis of a model describing the evolution of chronic myeloid leukemic with effect of growth factors is considered. The corresponding dynamics are represented by a system of ordinary differential equations of dimension 5. This system described the interactions between hematopoietic stem cells (H.S.C), hematopoietic mature cells (M.C), cancer hematopoietic stem cells, cancer hematopoietic mature cells and the associated growth factor concentration. Our research is, henceforth, carried out on the existence and the uniqueness of the solution of this system. The next substantive concern will be a discussion on the local and global stability of the corresponding steady states. Three scenarios, however, corresponding to different actions of hematopoiesis on stem cells (differentiate cells or both cells) are considered.

2020 Mathematics Subject Classification.   92B05, 34A34.

Key words and phrases.   Myeloid chronic leukemia model, cancer modeling, existence of solutions, global stability analysis, Lyapunov stability.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/y6zolb6gzm


References:

  1. M. Adimy, F. Crauste and S. Ruan, A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math. 65 (2005), 1328-1352.
    MathSciNet     CrossRef

  2. M. Adimy, F. Crauste, S. Bernard, J. Clairambault, S. Genieys and L. Pujo-Menjouet, Modélisation de la dynamique de l'hématopoiese normale et pathologique, Hematologie Revue (14)(5) (2008), 339-350.
    CrossRef

  3. B. Ainsebaa and C. Benosman, Global dynamics of hematopoietic stem cells and differentiated cells in a chronic myeloid leukemia model, J. Math. Biol. 62(6) (2011), 975-997.
    MathSciNet     CrossRef

  4. M. S. Almenshaw, I. A. Ibrahim, N. A. Khalifa and G. Z. Al-Mursy, Angiogenic activity in chronic myeloid leukemia, Journal of Leukemia 6(1) (2018), 1-5.
    CrossRef

  5. B. Appolo, Modélisation mathématique de la leucémie myéloïde chronique. Modélisation et simulation, Université de Lyon, 2017, (NNT : 2017LYSE1105).

  6. M. Askmyr, H. Agerstam, H. Lilljebjörn and al., Modeling chronic myeloid leukemia in immunodeficient mice reveals an inflammatory state with expansion of aberrant mast cells and accumulation of Pre B cells, Blood Cancer J. 124(21) (2014), e269.
    CrossRef

  7. J. Belair, M. C. Makey and J. M. Mahaffy, Hematopoietic model with moving boundary condition and state dependant delay: Applications in erythropoiesis, J. Theo. Biol. 190(2) (1998), 135-146.
    CrossRef

  8. I. Bendixson, Sur les courbes définies pour des équations différentielles, Acta Math. 24(1) (1901), 1-88.
    MathSciNet     CrossRef

  9. C. Benosman, Controle de la Dynamique de la Leucemie Myeloide Chronique par Imatinib, Mathematiques [math], Univesité de Bordeaux 1, 2010.

  10. M. Bonifacio, F. Stagno, L. Scaffidi, M. Kramera and F. Di Raimondo, Management of Chronic Myeloid Leukemia in Advanced Phase, Frontiers in Oncology 9 (2019), Article 1132.
    CrossRef

  11. M. Bouizem, B. Ainseba and A. Lakmeche, Mathematical analysis of an age structured leukemia model, Comm. Appl. Nonlinear Anal. 25(2) (2018), 1-20.
    MathSciNet

  12. S. N. Cathir, P. Guttorp and J. L. Abkowitz, The kinetics of clonal dominance in myeloproliferative disorders blood, Blood 106(8) (2005), 2688-2692.
    CrossRef

  13. G. D. Clapp, T. Lepoutre, R. Echeikh and E. Bernards, Implication of the autologous immune system in BCR-ABL transcript variations in chronic myelogenous leukemia patients treated with Imatinib, Cancer Res. 75(19) (2015), 4053-4062.
    CrossRef

  14. C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis. II. Cyclical neutropenia, J. Theoret. Biol. 237(2) (2005), 133-146.
    MathSciNet     CrossRef

  15. D. Dingli and F. Michor, Succesfull therapy must eradicate cancer stem cells, Stem Cells 24(12) (2006), 2603-2610.
    CrossRef

  16. H. Dulac, Sur les cycles limites, Bull. Soc. Math. France 51 (1923), 45-188.
    MathSciNet     CrossRef

  17. R. Duval, L.-C. Bui, C. Mathieu and al., Benzoquinone, a leukemogenic metabolite of benzene, catalytically inhibits the protein tyrosine phosphatase PTPN2 and alters STAT signaling, J. Biol. Chem. 294(33) (2019), 12483-12494.
    CrossRef

  18. L. Han and A. Pugliese, Epidemics in two competing species, Nonlinear Anal. Real World Appl. 10 (2009), 723-744.
    MathSciNet     CrossRef

  19. R. Hehlmann, Chronic Myeloid Leukemia, Springer, 2018.
    CrossRef

  20. M. Helal, A. Lakmeche and F. Souna, Chronic myeloid leukemia model with periodic pulsed teatment, ARIMA Rev. Afr. Rech. Inform. Math. Appl. 30 (2019), 123-144
    MathSciNet

  21. R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1985.
    MathSciNet     CrossRef

  22. M. Houshmand, G. Simonetti, P. Circosta and al., Chronic myeloid leukemia stem cells, Leukemia 33(7) (2019), 1543-1556.
    CrossRef

  23. E. Jabbour and H. Kantarjian, Chronic Myeloid Leukemia: 2020 update on diagnosis, therapy and monitoring, American Journal of Hematology 95(6) (2020), 691-709.
    CrossRef

  24. H. K. Khalil, Nonlinear Systems, Third edition, Prentice Hall, 2002.
    MathSciNet

  25. N. L. Komarova and D. Wodarz, Effect of cellular quiescence on the success of targeted CML therapy, PLoS One 2(10) (2007), e990.
    CrossRef

  26. M. C. Mackey, Mathematical models of hematopoietic cell replication and control, in: The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids, Prentice Hall, 1997, pp. 149-178.

  27. F. Michor, T. P. Hughes, Y. Iwasa, S. Branford, N. P. Shah, C. L. Sawyers and M. A. Nowack, Dynamics of chronic myeloïd leukemia, Nature 435 (2005), 1267-1270.
    CrossRef

  28. J. Murray, Mathematical Biology: I. An Introduction, Third edition, Springer Science Busines Media, New York, 2011.
    MathSciNet

  29. P. C. Parks, A. M. Lyapunov's stability theory - 100 years on, IMA J. Math. Control Inform. 9(4) (1992), 275-303.
    MathSciNet     CrossRef

  30. J. N. Poston and P. S. Becker, Controversies regarding use of myeloid growth factors in leukemia, J Natl Compr Canc Netw 15(12) (2017), 1551-1557.
    CrossRef

  31. I. Roeder, M. Herberg and M. Horn, An "age"-structured model of hematopoietic stem cells organization with application to chronic myeloid leukemia, Bull. Math. Biol. 71(3) (2009), 602-626.
    MathSciNet     CrossRef

  32. N. Takahashi, Chronic myeloid leukemia: State of the art management, Rinsho Ketsueki 59(6) (2018), 747-754.
    CrossRef


Rad HAZU Home Page