Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 201-227.
MATHEMATICAL ANALYSIS OF A MODEL FOR CHRONIC MYELOID LEUKEMIA
Fatima Zohra Elouchdi Derrar, Djamila Benmerzouk and Bedr'Eddine Ainesba
Department of Mathematics, Tlemcen University,
BP 119, 13000 Tlemcen, Algeria
e-mail: derrar_fz@yahoo.fr
e-mail: d_benmerzouk@yahoo.fr
Bordeaux Mathematics Institute, UMR CNRS 52 51, Case 36,
Université Victor Segalen Bordeaux 2,3 ter place de la victoire,
F 33076 Bordeaux Cedex, France
e-mail: Bedreddine.ainseba@u-bordeaux.fr
Abstract. In this paper, a mathematical analysis of a model describing
the evolution of chronic myeloid leukemic with effect of growth factors
is considered. The corresponding dynamics are represented by a system
of ordinary differential equations of dimension 5. This system described
the interactions between hematopoietic stem cells (H.S.C), hematopoietic
mature cells (M.C), cancer hematopoietic stem cells, cancer hematopoietic
mature cells and the associated growth factor concentration. Our research
is, henceforth, carried out on the existence and the uniqueness of the solution
of this system. The next substantive concern will be a discussion
on the local and global stability of the corresponding steady states. Three
scenarios, however, corresponding to different actions of hematopoiesis on
stem cells (differentiate cells or both cells) are considered.
2020 Mathematics Subject Classification.
92B05, 34A34.
Key words and phrases. Myeloid chronic leukemia model, cancer modeling, existence
of solutions, global stability analysis, Lyapunov stability.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y6zolb6gzm
References:
- M. Adimy, F. Crauste and S. Ruan, A mathematical study of the hematopoiesis process
with applications to chronic myelogenous leukemia, SIAM J. Appl. Math. 65 (2005),
1328-1352.
MathSciNet
CrossRef
- M. Adimy, F. Crauste, S. Bernard, J. Clairambault, S. Genieys and L. Pujo-Menjouet,
Modélisation de la dynamique de l'hématopoiese normale et pathologique, Hematologie
Revue (14)(5) (2008), 339-350.
CrossRef
- B. Ainsebaa and C. Benosman, Global dynamics of hematopoietic stem cells and differentiated
cells in a chronic myeloid leukemia model, J. Math. Biol. 62(6) (2011),
975-997.
MathSciNet
CrossRef
- M. S. Almenshaw, I. A. Ibrahim, N. A. Khalifa and G. Z. Al-Mursy, Angiogenic activity
in chronic myeloid leukemia, Journal of Leukemia 6(1) (2018), 1-5.
CrossRef
- B. Appolo, Modélisation mathématique de la leucémie myéloïde chronique. Modélisation
et simulation, Université de Lyon, 2017, (NNT : 2017LYSE1105).
- M. Askmyr, H. Agerstam, H. Lilljebjörn and al., Modeling chronic myeloid leukemia
in immunodeficient mice reveals an inflammatory state with expansion of aberrant
mast cells and accumulation of Pre B cells, Blood Cancer J. 124(21) (2014), e269.
CrossRef
- J. Belair, M. C. Makey and J. M. Mahaffy, Hematopoietic model with moving boundary
condition and state dependant delay: Applications in erythropoiesis, J. Theo. Biol.
190(2) (1998), 135-146.
CrossRef
- I. Bendixson, Sur les courbes définies pour des équations différentielles,
Acta Math. 24(1) (1901), 1-88.
MathSciNet
CrossRef
- C. Benosman, Controle de la Dynamique de la Leucemie Myeloide Chronique par
Imatinib, Mathematiques [math], Univesité de Bordeaux 1, 2010.
- M. Bonifacio, F. Stagno, L. Scaffidi, M. Kramera and F. Di Raimondo, Management of
Chronic Myeloid Leukemia in Advanced Phase, Frontiers in Oncology 9 (2019), Article
1132.
CrossRef
- M. Bouizem, B. Ainseba and A. Lakmeche, Mathematical analysis of an age structured
leukemia model, Comm. Appl. Nonlinear Anal. 25(2) (2018), 1-20.
MathSciNet
- S. N. Cathir, P. Guttorp and J. L. Abkowitz, The kinetics of clonal dominance in
myeloproliferative disorders blood, Blood 106(8) (2005), 2688-2692.
CrossRef
- G. D. Clapp, T. Lepoutre, R. Echeikh and E. Bernards, Implication of the autologous
immune system in BCR-ABL transcript variations in chronic myelogenous leukemia
patients treated with Imatinib, Cancer Res. 75(19) (2015), 4053-4062.
CrossRef
- C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis. II. Cyclical
neutropenia, J. Theoret. Biol. 237(2) (2005), 133-146.
MathSciNet
CrossRef
- D. Dingli and F. Michor, Succesfull therapy must eradicate cancer stem cells, Stem Cells 24(12)
(2006), 2603-2610.
CrossRef
- H. Dulac, Sur les cycles limites,
Bull. Soc. Math. France 51
(1923), 45-188.
MathSciNet
CrossRef
- R. Duval, L.-C. Bui, C. Mathieu and al., Benzoquinone, a leukemogenic metabolite of benzene, catalytically inhibits
the protein tyrosine phosphatase PTPN2 and alters STAT signaling, J. Biol. Chem.
294(33) (2019), 12483-12494.
CrossRef
- L. Han and A. Pugliese, Epidemics in two competing species, Nonlinear Anal. Real
World Appl. 10 (2009), 723-744.
MathSciNet
CrossRef
- R. Hehlmann, Chronic Myeloid Leukemia, Springer, 2018.
CrossRef
- M. Helal, A. Lakmeche and F. Souna, Chronic myeloid leukemia model with periodic
pulsed teatment, ARIMA Rev. Afr. Rech. Inform. Math. Appl. 30 (2019), 123-144
MathSciNet
- R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1985.
MathSciNet
CrossRef
- M. Houshmand, G. Simonetti, P. Circosta and al., Chronic myeloid leukemia stem
cells, Leukemia 33(7) (2019), 1543-1556.
CrossRef
- E. Jabbour and H. Kantarjian, Chronic Myeloid Leukemia: 2020 update on diagnosis,
therapy and monitoring, American Journal of Hematology 95(6) (2020), 691-709.
CrossRef
- H. K. Khalil, Nonlinear Systems, Third edition, Prentice Hall, 2002.
MathSciNet
- N. L. Komarova and D. Wodarz, Effect of cellular quiescence on the success of targeted
CML therapy, PLoS One 2(10) (2007), e990.
CrossRef
- M. C. Mackey, Mathematical models of hematopoietic cell replication and control,
in: The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and
Biofluids, Prentice Hall, 1997, pp. 149-178.
- F. Michor, T. P. Hughes, Y. Iwasa, S. Branford, N. P. Shah, C. L. Sawyers and M. A.
Nowack, Dynamics of chronic myeloïd leukemia, Nature 435 (2005), 1267-1270.
CrossRef
- J. Murray, Mathematical Biology: I. An Introduction, Third edition, Springer Science
Busines Media, New York, 2011.
MathSciNet
- P. C. Parks, A. M. Lyapunov's stability theory - 100 years on, IMA J. Math. Control
Inform. 9(4) (1992), 275-303.
MathSciNet
CrossRef
- J. N. Poston and P. S. Becker, Controversies regarding use of myeloid growth factors
in leukemia, J Natl Compr Canc Netw 15(12) (2017), 1551-1557.
CrossRef
- I. Roeder, M. Herberg and M. Horn, An "age"-structured model of hematopoietic
stem cells organization with application to chronic myeloid leukemia, Bull. Math. Biol.
71(3) (2009), 602-626.
MathSciNet
CrossRef
- N. Takahashi, Chronic myeloid leukemia: State of the art management, Rinsho Ketsueki
59(6) (2018), 747-754.
CrossRef
Rad HAZU Home Page