Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 171-187.
EQUISEGMENTARY LINES OF A TRIANGLE IN THE ISOTROPIC PLANE
Ružica Kolar-Šuper
Faculty of Education, University of Osijek,
31 000 Osijek, Croatia
e-mail: rkolar@foozos.hr
Abstract. In this paper we introduce the concept of equisegmentary
lines in the isotropic plane. We derive the equations of equisegmentary lines
for a standard triangle and prove that the angle between them is equal to
the Brocard angle of a standard triangle. We study the dual Brocard circle,
the circle whose tangents are equisegmentary lines, as well as the inertial
axis and the Steiner axis. Some interesting properties of this circle are also
investigated.
2020 Mathematics Subject Classification.
51N25.
Key words and phrases. Isotropic plane, equisegmentary lines, Brocard angle, dual
Brocard circle.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ypn4ocdlj9
References:
- J. Beban-Brkić, R. Kolar-Šuper, Z. Kolar-Begović and V. Volenec, On Feuerbach's theorem
and a pencil of circles in the isotropic plane, J. Geom. Graphics 10 (2006),
125-132.
MathSciNet
- J. Beban-Brkić, V. Volenec, Z. Kolar-Begović and R.Kolar-Šuper, On Gergonne point
of the triangle in isotropic plane, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 17
(2013), 95-106.
MathSciNet
- Z. Kolar-Begović, R. Kolar-Šuper and V. Volenec, Brocard angle of the standard triangle
in an isotropic plane, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 16 (2018),
55-66.
MathSciNet
- Z. Kolar-Begović, R. Kolar-Šuper, J. Beban-Brkić and V.Volenec, Symmedians and the
symmedian center of the triangle in an isotropic plane, Math. Pannon. 17 (2006),
287-301.
MathSciNet
- Z. Kolar-Begović, R. Kolar-Šuper and V. Volenec, Angle bisectors of a triangle in I2,
Math. Commun. 13 (2008), 97-105.
MathSciNet
- Z.Kolar-Begović, R. Kolar-Šuper and V. Volenec, Brocard circle of the triangle in an
isotropic plane, Math. Pannon. 26 (2017-2018), 103-113.
MathSciNet
- R. Kolar-Šuper, Z. Kolar-Begović, V. Volenec and J. Beban-Brkić, Metrical relationships
in a standard triangle in an isotropic plane, Math. Commun. 10 (2005), 149-157.
MathSciNet
- J. Neuberg, Bibliographie du triangle et du tétraèdre, Mathesis 36 (1922), 50.
- M. d' Ocagne, A propos d'une note récente sur le triangle, Mathesis (1888), 131-132.
- M. d' Ocagne, Quelques propriétés du triangle, Mathesis (1887), 265-271.
- H. Sachs, Ebene isotrope Geometrie. Vieweg-Verlag, Braunschweig, Wiesbaden 1987.
MathSciNet
CrossRef
- K. Strubecker, Geometrie in einer isotropen Ebene, Mathematischer und naturwissenschaftlicher
Unterricht 15 (1962-1963), 297-306, 343-351, 385-394.
MathSciNet
- V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Crelle-Brocard points of the triangle
in an isotropic plane, Math. Pannon. 24 (2013), 167-181.
MathSciNet
- V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Steiner's ellipses of the triangle in
an isotropic plane, Math. Pannon. 21 (2010), 229-238.
MathSciNet
Rad HAZU Home Page