Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 171-187.

EQUISEGMENTARY LINES OF A TRIANGLE IN THE ISOTROPIC PLANE

Ružica Kolar-Šuper

Faculty of Education, University of Osijek, 31 000 Osijek, Croatia
e-mail: rkolar@foozos.hr


Abstract.   In this paper we introduce the concept of equisegmentary lines in the isotropic plane. We derive the equations of equisegmentary lines for a standard triangle and prove that the angle between them is equal to the Brocard angle of a standard triangle. We study the dual Brocard circle, the circle whose tangents are equisegmentary lines, as well as the inertial axis and the Steiner axis. Some interesting properties of this circle are also investigated.

2020 Mathematics Subject Classification.   51N25.

Key words and phrases.   Isotropic plane, equisegmentary lines, Brocard angle, dual Brocard circle.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ypn4ocdlj9


References:

  1. J. Beban-Brkić, R. Kolar-Šuper, Z. Kolar-Begović and V. Volenec, On Feuerbach's theorem and a pencil of circles in the isotropic plane, J. Geom. Graphics 10 (2006), 125-132.
    MathSciNet

  2. J. Beban-Brkić, V. Volenec, Z. Kolar-Begović and R.Kolar-Šuper, On Gergonne point of the triangle in isotropic plane, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 17 (2013), 95-106.
    MathSciNet

  3. Z. Kolar-Begović, R. Kolar-Šuper and V. Volenec, Brocard angle of the standard triangle in an isotropic plane, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 16 (2018), 55-66.
    MathSciNet

  4. Z. Kolar-Begović, R. Kolar-Šuper, J. Beban-Brkić and V.Volenec, Symmedians and the symmedian center of the triangle in an isotropic plane, Math. Pannon. 17 (2006), 287-301.
    MathSciNet

  5. Z. Kolar-Begović, R. Kolar-Šuper and V. Volenec, Angle bisectors of a triangle in I2, Math. Commun. 13 (2008), 97-105.
    MathSciNet

  6. Z.Kolar-Begović, R. Kolar-Šuper and V. Volenec, Brocard circle of the triangle in an isotropic plane, Math. Pannon. 26 (2017-2018), 103-113.
    MathSciNet

  7. R. Kolar-Šuper, Z. Kolar-Begović, V. Volenec and J. Beban-Brkić, Metrical relationships in a standard triangle in an isotropic plane, Math. Commun. 10 (2005), 149-157.
    MathSciNet

  8. J. Neuberg, Bibliographie du triangle et du tétraèdre, Mathesis 36 (1922), 50.

  9. M. d' Ocagne, A propos d'une note récente sur le triangle, Mathesis (1888), 131-132.

  10. M. d' Ocagne, Quelques propriétés du triangle, Mathesis (1887), 265-271.

  11. H. Sachs, Ebene isotrope Geometrie. Vieweg-Verlag, Braunschweig, Wiesbaden 1987.
    MathSciNet     CrossRef

  12. K. Strubecker, Geometrie in einer isotropen Ebene, Mathematischer und naturwissenschaftlicher Unterricht 15 (1962-1963), 297-306, 343-351, 385-394.
    MathSciNet

  13. V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Crelle-Brocard points of the triangle in an isotropic plane, Math. Pannon. 24 (2013), 167-181.
    MathSciNet

  14. V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Steiner's ellipses of the triangle in an isotropic plane, Math. Pannon. 21 (2010), 229-238.
    MathSciNet


Rad HAZU Home Page