Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 155-169.

LOCI OF CENTERS IN PENCILS OF TRIANGLES IN THE ISOTROPIC PLANE

Ema Jurkin

Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: ema.jurkin@rgn.unizg.hr


Abstract.   In this paper we consider a triangle pencil in an isotropic plane consisting of those triangles that have two fixed vertices, while the third vertex is moving along a line. We study the curves of centroids, Gergonne points, symmedian points, Brocard points and Feuerbach points for such a pencil of triangles.

2020 Mathematics Subject Classification.   51N25.

Key words and phrases.   Isotropic plane, pencil of triangles, centroid, Gergonne point, symmedian point, Brocard points, Feuerbach point.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/94kl4cl6wm


References:

  1. J. Beban-Brkić, R. Kolar-Šuper, Z. Kolar-Begović and V. Volenec, On Feuerbach's theorem and a pencil of circles in the isotropic plane, J. Geom. Graph. 10 (2006), 125-132.
    MathSciNet

  2. J. Beban-Brkić, M. Šimić and V. Volenec, On foci and asymptotes of conics in the isotropic plane, Sarajevo J. Math. 3 (2007), 257-266.
    MathSciNet

  3. J. Beban-Brkić, V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, On Gergonne point of the triangle in isotropic plane, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 17 (2013), 95-106.
    MathSciNet

  4. A. Bernhart, Polygons of pursuit, Scripta Math. 24 (1959), 23-50.
    MathSciNet

  5. E. Jurkin, Circular quartics in the isotropic plane generated by projectively linked pencils of conics, Acta Math. Hung. 130 (2011), 35-49.
    MathSciNet     CrossRef

  6. E. Jurkin, Curves of Brocard points in triangle pencils in isotropic plane, KoG 22 (2018), 20-23.
    MathSciNet     CrossRef

  7. M. Katić Žlepalo and E. Jurkin, Curves of centroids, Gergonne points and symmedian centers in triangle pencils in isotropic plane, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 22 (2018), 119-127.
    MathSciNet

  8. R. Kolar-Šuper, Z. Kolar-Begović, V. Volenec and J. Beban-Brkić, Metrical relationships in a standard triangle in an isotropic plane, Math. Commun. 10 (2005), 149-157.
    MathSciNet

  9. H. Sachs, Ebene Isotrope Geometrie, Wieweg, Braunschweig/Wiesbaden, 1987.
    MathSciNet     CrossRef

  10. I. M. Yaglom, A Simple Non-Euclidean Geometry and its Physical Basis, Heidelberg Science Library, Springer-Verlag, New York - Heidelberg - Berlin, 1979.
    MathSciNet


Rad HAZU Home Page