Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 127-138.
SOME NEW GRONWALL-BIHARI TYPE INEQUALITIES ASSOCIATED WITH GENERALIZED FRACTIONAL OPERATORS AND APPLICATIONS
Amira Ayari and Khaled Boukerrioua
Lanos Laboratory, University of Badji-Mokhtar, Annaba, Algeria
e-mail: ayari.amira1995@gmail.com
e-mail: khaledv2004@yahoo.fr
Abstract. In this paper, we derive some generalizations of certain
Gronwall-Bihari type inequality for generalized fractional operators unifying
Riemann-Liouville and Hadamard fractional operators for functions
in one variable, which provide explicit bounds on unknown functions.To
show the feasibility of the obtained inequalities, two illustrative examples
are also introduced.
2020 Mathematics Subject Classification.
26D15, 26A33, 26A42, 34A08, 34A12, 47B38.
Key words and phrases. Gronwall-type inequality, Cauchy problem, mean value theorem,
generalized fractional operators.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ygjwrcpxdy
References:
- Y. Adjabi, F. Jarad and T. Abdeljawad, On generalized fractional operators and a
Gronwall type inequality with applications, Filomat 31 (2017), 5457-5473.
MathSciNet
CrossRef
- R. Bellman, The stability of solutions of linear differential equations, Duke Math. J.
10 (1943), 643-647.
MathSciNet
CrossRef
- K. Boukerrioua, D. Diabi and T. Chiheb, Further nonlinear integral inequalities in two
independent variables on time scales and their applications, Malaya J. Mat. 5 (2017),
109-114.
- K. Boukerrioua, D. Diabi and B. Kilani, On some new generalizations of certain Gamidov
integral inequalities in two independent variables and their applications, Facta
Univ. Ser. Math. Inform. 33 (2018), 467-479.
MathSciNet
- K. Boukerrioua, I. Meziri and T. Chiheb, Some refinements of certain Gamidov integral
inequalities On time scales and applications, Kragujevac J. Math. 42
(2018), 131-152.
MathSciNet
CrossRef
- K. Boukerrioua, D. Diabi and B. Kilani, Some new Gronwall-Bihari type inequalities
and its application in the analysis for solutions to fractional differential equations,
International Journal of Mathematical and Computational Methods 5 (2020), 60-68.
- U. D. Dhongade and S. G. Deo, Some generalizations of Bellman-Bihari integral inequalities,
J. Math. Anal. Appl. 44 (1973), 218-226.
MathSciNet
CrossRef
- R. Diaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol,
Divulg. Mat. 15 (2007), 179-192.
MathSciNet
- F. C. Jiang and F. W. Meng, Explicit bounds on some new nonlinear integral inequalities
with delay, J. Comput. Appl. Math. 205 (2007), 479-486.
MathSciNet
CrossRef
- F. Jarad, T. Abdeljawad and D. Baleanu, On the generalized fractional derivatives
and their Caputo modification, J. Nonlinear Sci. Appl. 10 (2017) 2607-2619.
MathSciNet
CrossRef
- T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions
of a system of differential equations, Ann. of Math. (2) 20 (1919), 292-296.
MathSciNet
CrossRef
- Q.-H. Ma and J. Pečarić, Some new explicit bounds for weakly singular integral inequalities
with applications to fractional differential and integral equations, J. Math.
Anal. Appl. 341 (2008), 894-905.
MathSciNet
CrossRef
- M. Medved, Nonlinear singular integral inequalities for functions in two and n independent
variables, J. Inequal. Appl. 5 (2000), 287-308.
MathSciNet
CrossRef
- M. Medved, Integral inequalities and global solutions of semilinear evolution equations,
J. Math. Anal. Appl. 267 (2002), 643-650.
MathSciNet
CrossRef
- M. Mekki, K. Boukerrioua, B. Kilani and M. L. Sahari, New explicit bounds on
Gronwall-Bellman-Bihari-Gamidov integral inequalities and their weakly singular analogues
with applications, Kragujevac J. Math. 44 (2020), 603-615.
MathSciNet
CrossRef
- K. S. Nisar, G. Rahman, J. Choi, S. Mubeen, and M. Arshad, Certain Gronwall type
inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives
and their applications, East Asian Math. J. 34 (2018), 249-263.
CrossRef
- I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives,
Fractional Differential Equations, to Methods of their Solution and Some of their
Applications, Academic Press, San Diego, 1999.
MathSciNet
- M. Tomar, S. Mubeen and J. Choi, Certain inequalities associated with Hadamard
k-fractional integral operators, J. Inequal. Appl. 2016 (2016), Article ID 234.
MathSciNet
CrossRef
- J. R. L. Webb, Weakly singular Gronwall inequalities and applications to fractional
differential equations, J. Math. Anal. Appl. 471 (2019), 692-711.
MathSciNet
CrossRef
- A. Wiman, Über den fundamentalsatz in der theorie der funktionen Eα(x), Acta Math.
29 (1905), 191-201.
MathSciNet
CrossRef
- A. Wiman, Über die Nullstellen der funktionen Eα(x), Acta Math. 29 (1905), 217-234.
MathSciNet
CrossRef
- B. Zheng and Q.H. Feng, New Gronwall-Bellman type inequalities and applications in
the analysis for solutions to fractional differential equations, Abstr. Appl. Anal. 2013,
Article ID 705126, 13 pages.
MathSciNet
CrossRef
- B. Zeng, Explicit bounds derived by some new inequalities and applications in fractional
integral equations, J. Inequal Appl. 2014 (2014), Article 4, 12 pp.
MathSciNet
CrossRef
Rad HAZU Home Page