Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 127-138.

SOME NEW GRONWALL-BIHARI TYPE INEQUALITIES ASSOCIATED WITH GENERALIZED FRACTIONAL OPERATORS AND APPLICATIONS

Amira Ayari and Khaled Boukerrioua

Lanos Laboratory, University of Badji-Mokhtar, Annaba, Algeria
e-mail: ayari.amira1995@gmail.com
e-mail: khaledv2004@yahoo.fr


Abstract.   In this paper, we derive some generalizations of certain Gronwall-Bihari type inequality for generalized fractional operators unifying Riemann-Liouville and Hadamard fractional operators for functions in one variable, which provide explicit bounds on unknown functions.To show the feasibility of the obtained inequalities, two illustrative examples are also introduced.

2020 Mathematics Subject Classification.   26D15, 26A33, 26A42, 34A08, 34A12, 47B38.

Key words and phrases.   Gronwall-type inequality, Cauchy problem, mean value theorem, generalized fractional operators.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ygjwrcpxdy


References:

  1. Y. Adjabi, F. Jarad and T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat 31 (2017), 5457-5473.
    MathSciNet     CrossRef

  2. R. Bellman, The stability of solutions of linear differential equations, Duke Math. J. 10 (1943), 643-647.
    MathSciNet     CrossRef

  3. K. Boukerrioua, D. Diabi and T. Chiheb, Further nonlinear integral inequalities in two independent variables on time scales and their applications, Malaya J. Mat. 5 (2017), 109-114.

  4. K. Boukerrioua, D. Diabi and B. Kilani, On some new generalizations of certain Gamidov integral inequalities in two independent variables and their applications, Facta Univ. Ser. Math. Inform. 33 (2018), 467-479.
    MathSciNet

  5. K. Boukerrioua, I. Meziri and T. Chiheb, Some refinements of certain Gamidov integral inequalities On time scales and applications, Kragujevac J. Math. 42 (2018), 131-152.
    MathSciNet     CrossRef

  6. K. Boukerrioua, D. Diabi and B. Kilani, Some new Gronwall-Bihari type inequalities and its application in the analysis for solutions to fractional differential equations, International Journal of Mathematical and Computational Methods 5 (2020), 60-68.

  7. U. D. Dhongade and S. G. Deo, Some generalizations of Bellman-Bihari integral inequalities, J. Math. Anal. Appl. 44 (1973), 218-226.
    MathSciNet     CrossRef

  8. R. Diaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat. 15 (2007), 179-192.
    MathSciNet

  9. F. C. Jiang and F. W. Meng, Explicit bounds on some new nonlinear integral inequalities with delay, J. Comput. Appl. Math. 205 (2007), 479-486.
    MathSciNet     CrossRef

  10. F. Jarad, T. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl. 10 (2017) 2607-2619.
    MathSciNet     CrossRef

  11. T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. of Math. (2) 20 (1919), 292-296.
    MathSciNet     CrossRef

  12. Q.-H. Ma and J. Pečarić, Some new explicit bounds for weakly singular integral inequalities with applications to fractional differential and integral equations, J. Math. Anal. Appl. 341 (2008), 894-905.
    MathSciNet     CrossRef

  13. M. Medved, Nonlinear singular integral inequalities for functions in two and n independent variables, J. Inequal. Appl. 5 (2000), 287-308.
    MathSciNet     CrossRef

  14. M. Medved, Integral inequalities and global solutions of semilinear evolution equations, J. Math. Anal. Appl. 267 (2002), 643-650.
    MathSciNet     CrossRef

  15. M. Mekki, K. Boukerrioua, B. Kilani and M. L. Sahari, New explicit bounds on Gronwall-Bellman-Bihari-Gamidov integral inequalities and their weakly singular analogues with applications, Kragujevac J. Math. 44 (2020), 603-615.
    MathSciNet     CrossRef

  16. K. S. Nisar, G. Rahman, J. Choi, S. Mubeen, and M. Arshad, Certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications, East Asian Math. J. 34 (2018), 249-263.
    CrossRef

  17. I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Academic Press, San Diego, 1999.
    MathSciNet

  18. M. Tomar, S. Mubeen and J. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, J. Inequal. Appl. 2016 (2016), Article ID 234.
    MathSciNet     CrossRef

  19. J. R. L. Webb, Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl. 471 (2019), 692-711.
    MathSciNet     CrossRef

  20. A. Wiman, Über den fundamentalsatz in der theorie der funktionen Eα(x), Acta Math. 29 (1905), 191-201.
    MathSciNet     CrossRef

  21. A. Wiman, Über die Nullstellen der funktionen Eα(x), Acta Math. 29 (1905), 217-234.
    MathSciNet     CrossRef

  22. B. Zheng and Q.H. Feng, New Gronwall-Bellman type inequalities and applications in the analysis for solutions to fractional differential equations, Abstr. Appl. Anal. 2013, Article ID 705126, 13 pages.
    MathSciNet     CrossRef

  23. B. Zeng, Explicit bounds derived by some new inequalities and applications in fractional integral equations, J. Inequal Appl. 2014 (2014), Article 4, 12 pp.
    MathSciNet     CrossRef


Rad HAZU Home Page