Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 91-111.

ON A VARIANT AND EXTENSION OF GABLER INEQUALITY

Sadia Chanan, Asif R. Khan and Inam Ullah Khan

Department of Mathematics, University of Karachi, University Road, Karachi 75270, Pakistan
e-mail: sadiachanakhan@yahoo.com
e-mail: asifrk@uok.edu.pk

Pakistan Shipowners' Govt. college, North Nazimabad, Karachi, Pakistan
e-mail: zrishk@gmail.com


Abstract.   We propose a Jensen-Mercer type variant and a Niezgoda type extension of Gabler inequality along with applications.

2020 Mathematics Subject Classification.   26A51, 39B62, 26D15, 26D20, 26D99.

Key words and phrases.   Convex functions, Jensen-Mercer inequality, Niezgoda's inequality, Gabler inequality.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/y54jofv24m


References:

  1. M. M. Ali and A. R. Khan, Generalized integral Mercer's inequality and integral means, J. Inequal. Spec. Funct. 10 (2019), 60-76.
    MathSciNet

  2. M. M. Ali, A. R. Khan, I. U. Khan and S. Saadi, Improvement of Jensen and Levinson type inequalities for functions with nondecreasing increments, Global J. Pure Appl. Math. 15 (2019), 945-970.

  3. M. Klaričić Bakula and J. Pečarić, On the Jensen's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math. 10 (2006), 1271-1292.
    MathSciNet     CrossRef

  4. I. Brnetić, K. A. Khan and J. Pečarić, Refinements of Jensen's inequality with applications to cyclic mixed symmetric means and Cauchy means, J. Math. Ineq. 9 (2015), 1309-1321.
    MathSciNet     CrossRef

  5. P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and Their Inequalities, Reidel, Dordrecht, 1988.
    MathSciNet     CrossRef

  6. S. Chanan, A. R. Khan and I. U. Khan, Gabler inequality for functions with nondecreasing increments of convex type, Adv. Inequal. Appl. 2020 (2020), pp. 10.

  7. S. Chanan, A. R. Khan, S. Ahmed and N. Raisat, Generalizations of Ky Fan inequality and related results, J. Inequal. Spec. Funct. 10 (2019), 123-142.
    MathSciNet

  8. W. S. Cheung, A. Matković and J. Pečarić, A variant of Jessen's inequality and generalized means, JIPAM. J. Inequal. Pure Appl. Math. 7(1) (2006), Article 10.
    MathSciNet

  9. S. S. Dragomir, A new refinement of Jensen's inequality in linear spaces with applications, Math. Comput. Modelling 52 (2010), 1497-1505.
    MathSciNet     CrossRef

  10. S. S. Dragomir, A refinement of Jensen's inequality with applications for f-divergence measure, Taiwanese J. Math. 14 (2010), 153-164.
    MathSciNet     CrossRef

  11. S. S. Dragomir, Some refinements of Jensen's inequality, J. Math. Anal. Appl. 168 (1992), 518-522.
    MathSciNet     CrossRef

  12. S. Gabler, Folgenkonvexe Funktionen, Manuscripta Math. 29 (1979), 29-47.
    MathSciNet     CrossRef

  13. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1978.
    MathSciNet

  14. L. Horváth, A parameter-dependent refinement of the discrete Jensen's inequality for convex and mid-convex functions, J. Inequal. Appl. 2011 (2011), Article 26.
    MathSciNet     CrossRef

  15. S. Hussain and J. Pečarić, An improvement of Jensen's inequality with some applications, Asian-Eur. J. Math. 2 (2009), 85-94.
    MathSciNet     CrossRef

  16. M. A. Khan, A. R. Khan and J. Pečarić, On the refinements of Jensen-Mercer's inequality, Rev. Anal. Numér. Théor. Approx. 41 (2012), 62-81.
    MathSciNet

  17. A. R. Khan and I. U. Khan, An extension of Jensen-Mercer inequality for functions with nondecreasing increments, J. Inequal. Spec. Funct. 10 (2019), 1-15.
    MathSciNet

  18. A. R. Khan, J. Pečarić and M. Praljak, A note on generalized Mercer's inequality, Bull. Malays. Math. Sci. Soc. 40 (2017), 881-889.
    MathSciNet     CrossRef

  19. A. R. Khan and I. U. Khan, Some remarks on Niezgoda's extension of Jensen-Mercer inequality, Adv. Inequal. Appl. 2016 (12) (2016), 1-11.

  20. A. R. Khan, J. Pečarić and M. Praljak, Popoviciu type inequalities for n-convex functions via extension of Montgomery identity, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 24 (2016), 161-188.
    MathSciNet     CrossRef

  21. A. R. Khan and S. Saadi, Generalized Jensen-Mercer inequality for functions with nondecreasing increments, Abstr. Appl. Anal. 2016 (2016), Article ID 5231476, 12 pages.
    MathSciNet     CrossRef

  22. A. R. Khan, J. Pečarić and M. Rodić Lipanovć, Exponential convexity for Jensen-type inequalities, J. Math. Inequal. 7 (2013), 313-335.
    MathSciNet     CrossRef

  23. A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of majorization and its applications (Second Edition), Springer Series in Statistics, Springer, New York, 2011.
    MathSciNet     CrossRef

  24. A. Mcd. Mercer, A variant of Jensen's inequality, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), Article 73.
    MathSciNet

  25. D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers Group, Dordrecht, 1993.
    MathSciNet     CrossRef

  26. D. S. Mitrinović and J. Pečarić, Unified treatment of some inequalities for mixed means, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 197 (1988), 391-397.
    MathSciNet

  27. M. Niezgoda, A generalization of Mercer's result on convex functions, Nonlinear Anal. 71 (2009), 2771-2779.
    MathSciNet     CrossRef

  28. J. Pečarić, Remarks on an inequality of S. Gabler, J. Math. Anal. Appl. 184 (1994), 19-21.
    MathSciNet     CrossRef

  29. J. Pečarić, F. Proschan and Y. L. Tong, Convex functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
    MathSciNet

  30. J. Pečarić and V. Volenec, Interpolation of Jensen inequality with some applications, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 197 (1988), 463-467.
    MathSciNet

  31. J. Rooin, Some refinements of discrete Jensen's inequality and some of its applications, Nonlinear Funct. Anal. Appl. 12 (2007), 107-118.
    MathSciNet

  32. X. L. Tang and J. J. Wen, Some developments of refined Jensen's inequality, J. Southwest Univ. Nationalities 29 (2003), 20-26.

  33. L. C. Wang, X. F. Ma and L. H. Liu, A note on some new refinements of Jensen's inequality for convex functions, JIPAM. J. Inequal. Pure Appl. Math. 10(2) (2009), Article 48.
    MathSciNet

  34. G. Zabandan and A. Kilicman, A new version of Jensen's inequality and related results, J. Inequal. Appl. 2012 (2012), Article 238.
    MathSciNet     CrossRef


Rad HAZU Home Page