Abstract. In this paper we use matrices to obtain new composition identities f(xi)f(yi) = f(zi), where f(xi) is an irreducible form, with integer coefficients, of degree n in n variables (n being 3, 4, 6 or 8), and xi, yi, i = 1, 2, ... , n, are independent variables while the values of zi, i = 1, 2, ... , n, are given by bilinear forms in the variables xi, yi. When n = 2, 4 or 8, we also obtain new composition identities f(xi)f(yi)f(zi) = f(wi) where, as before, f(xi) is an irreducible form, with integer coefficients, of degree n in n variables while xi, yi, zi, i = 1, 2, ... , n, are independent variables and the values of wi, i = 1, 2, ... , n, are given by trilinear forms in the variables xi, yi, zi, and such that the identities cannot be derived from any identities of the type f(xi)f(yi) = f(zi). Further, we describe a method of obtaining both these types of composition identities for forms of higher degrees. We also describe a method of generating infinitely many integer solutions of certain quartic and octic diophantine equations f(x1, ... , xn) = 1 where f(x1, ... , xn) is a form that admits a composition identity and n = 4, 6 or 8.
2020 Mathematics Subject Classification. 11E76, 11E16, 11C20, 11D25, 11D41.
Key words and phrases. Composition of forms, higher degree forms, threefold composition of forms, unital commutative algebra of matrices, higher degree diophantine equations.
DOI: https://doi.org/10.21857/moxpjh1n5m
References:
MathSciNet
CrossRef
MathSciNet
MathSciNet
CrossRef
MathSciNet
CrossRef
MathSciNet
MathSciNet
CrossRef