Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 45-53.
DIOPHANTINE QUINTUPLES CONTAINING TWO PAIRS OF CONJUGATES IN SOME QUADRATIC FIELDS
Zrinka Franušić
Department of Mathematics, University of Zagreb,
10 000 Zagreb, Croatia
e-mail: fran@math.hr
Abstract. In this paper, we describe constructions of Diophantine
quintuples of the special form in rings Z[√D]
for certain positive integer D.
The term "special form" refers to Diophantine quintuples of the form
{e, a + b√D, a - b√D,
c + d√D, c - d√D},
where a, b, c, d, e are integers. Also, we
assume these quintuples contain two regular Diophantine quadruples.
2020 Mathematics Subject Classification.
11D09, 11R11.
Key words and phrases. Diophantine quintuples, regular Diophantine quadruples, quadratic
fields.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y26kecl809
References:
- N. Adžaga, On the size of Diophantine m-tuples in imaginary quadratic number rings,
Bull. Math. Sci. 11(1) (2021), Paper No. 1950020 (10 pages).
MathSciNet
CrossRef
- N. Adžaga, A. Filipin and Z. Franušić, On the extensions of the Diophantine triples
in Gaussian integers, Monatsh. Math. 197 (2022), 535-563.
MathSciNet
CrossRef
- J. Arkin, V. E. Hoggatt and E. G. Strauss, On Euler's solution of a problem of Diophantus,
Fibonacci Quart. 17 (1979), 333-339.
MathSciNet
- A. Bayad, A. Filipin and A. Togbé, Extension of a parametric family of Diophantine
triples in Gaussian integers, Acta Math. Hungar. 148 (2016), 312-327.
MathSciNet
CrossRef
- L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966.
MathSciNet
- A. Dujella, Diophantine triples and construction of high-rank elliptic curves over Q
with three non-trivial 2-torsion points, Rocky Mountain J. Math. 30 (2000), 157-164.
MathSciNet
CrossRef
- A. Dujella, Diophantine m-tuples,
https://web.math.pmf.unizg.hr/∼duje/dtuples.html.
- A. Dujella, What is ... a Diophantine m-tuple?, Notices Amer. Math. Soc. 63 (2016),
772-774.
MathSciNet
CrossRef
- A. Dujella, M. Kazalicki, M. Mikić and M. Szikszai, There are infinitely many rational
Diophantine sextuples, Int. Math. Res. Not. IMRN 2017 (2) (2017), 490-508.
MathSciNet
CrossRef
- A. Dujella, M. Kazalicki and V. Petričević, Rational Diophantine sextuples containing
two regular quadruples and one regular quintuple, Acta Mathematica Spalatensia 1
(2021), 19-27.
CrossRef
- A. Dujella, Z. Franušić and V. Petričević, Formulas for Diophantine quintuples containing
two pairs of conjugates in some quadratic fields, Period. Math. Hungar., to appear.
CrossRef
- Z. Franušić, On the extensibility of Diophantine triples {k-1, k+1, 4k} for Gaussian
integers, Glas. Mat. Ser. III 43 (2008), 265-291.
MathSciNet
CrossRef
- P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41 (2006), 195-203.
MathSciNet
CrossRef
- P. E. Gibbs, Diophantine quintuples over quadratic rings, preprint, 2018,
https://www.researchgate.net/publication/323176085_Diophantine_Quintuples_over_
Quadratic_Rings.
- B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer.
Math. Soc. 371 (2019), 6665-6709.
MathSciNet
CrossRef
Rad HAZU Home Page