Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 45-53.

DIOPHANTINE QUINTUPLES CONTAINING TWO PAIRS OF CONJUGATES IN SOME QUADRATIC FIELDS

Zrinka Franušić

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: fran@math.hr


Abstract.   In this paper, we describe constructions of Diophantine quintuples of the special form in rings Z[√D] for certain positive integer D. The term "special form" refers to Diophantine quintuples of the form {e, a + bD, a - bD, c + dD, c - dD}, where a, b, c, d, e are integers. Also, we assume these quintuples contain two regular Diophantine quadruples.

2020 Mathematics Subject Classification.   11D09, 11R11.

Key words and phrases.   Diophantine quintuples, regular Diophantine quadruples, quadratic fields.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/y26kecl809


References:

  1. N. Adžaga, On the size of Diophantine m-tuples in imaginary quadratic number rings, Bull. Math. Sci. 11(1) (2021), Paper No. 1950020 (10 pages).
    MathSciNet     CrossRef

  2. N. Adžaga, A. Filipin and Z. Franušić, On the extensions of the Diophantine triples in Gaussian integers, Monatsh. Math. 197 (2022), 535-563.
    MathSciNet     CrossRef

  3. J. Arkin, V. E. Hoggatt and E. G. Strauss, On Euler's solution of a problem of Diophantus, Fibonacci Quart. 17 (1979), 333-339.
    MathSciNet

  4. A. Bayad, A. Filipin and A. Togbé, Extension of a parametric family of Diophantine triples in Gaussian integers, Acta Math. Hungar. 148 (2016), 312-327.
    MathSciNet     CrossRef

  5. L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966.
    MathSciNet

  6. A. Dujella, Diophantine triples and construction of high-rank elliptic curves over Q with three non-trivial 2-torsion points, Rocky Mountain J. Math. 30 (2000), 157-164.
    MathSciNet     CrossRef

  7. A. Dujella, Diophantine m-tuples, https://web.math.pmf.unizg.hr/∼duje/dtuples.html.

  8. A. Dujella, What is ... a Diophantine m-tuple?, Notices Amer. Math. Soc. 63 (2016), 772-774.
    MathSciNet     CrossRef

  9. A. Dujella, M. Kazalicki, M. Mikić and M. Szikszai, There are infinitely many rational Diophantine sextuples, Int. Math. Res. Not. IMRN 2017 (2) (2017), 490-508.
    MathSciNet     CrossRef

  10. A. Dujella, M. Kazalicki and V. Petričević, Rational Diophantine sextuples containing two regular quadruples and one regular quintuple, Acta Mathematica Spalatensia 1 (2021), 19-27.
    CrossRef

  11. A. Dujella, Z. Franušić and V. Petričević, Formulas for Diophantine quintuples containing two pairs of conjugates in some quadratic fields, Period. Math. Hungar., to appear.
    CrossRef

  12. Z. Franušić, On the extensibility of Diophantine triples {k-1, k+1, 4k} for Gaussian integers, Glas. Mat. Ser. III 43 (2008), 265-291.
    MathSciNet     CrossRef

  13. P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41 (2006), 195-203.
    MathSciNet     CrossRef

  14. P. E. Gibbs, Diophantine quintuples over quadratic rings, preprint, 2018, https://www.researchgate.net/publication/323176085_Diophantine_Quintuples_over_ Quadratic_Rings.

  15. B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.
    MathSciNet     CrossRef


Rad HAZU Home Page