Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 21-43.
THE PROBLEM OF THE EXTENSION OF D(4)-TRIPLE {1, b, c}
Kouèssi Norbert Adédji, Alan Filipin and Alain Togbé
Institut de Mathématiques et de Sciences Physiques,
Université d'Abomey-Calavi, Bénin
e-mail: adedjnorb1988@gmail.com
Faculty of Civil Engineering, University of Zagreb,
Fra Andrije Kačića-Miošića 26, 10000 Zagreb, Croatia
e-mail: alan.filipin@grad.unizg.hr
Department of Mathematics, Statistics and Computer Science,
Purdue University Northwest, 1401 S, U.S. 421, Westville IN 46391 USA
e-mail: atogbe@pnw.edu
Abstract. In this paper, we study the extensibility of the D(4)-triple
{1, b, c}, where 1 < b < c, by proving that such a set cannot be extended
to an irregular D(4)-quadruple only for some values of c. For this study,
we will use the classical methods based on the resolution of the binary
recurrence sequences with new approaches in order to confirm a conjecture
of uniqueness of such an extension.
2020 Mathematics Subject Classification.
11D09, 11B37, 11J68, 11J86, 11Y65.
Key words and phrases. Diophantine m-tuples, system of Pellian equations, reduction
method, linear form in logarithms.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/ygjwrcpgoy/
References:
- Lj. Baćić and A. Filipin, On the extensibility of D(4)-pair {k - 2, k + 2}, J. Comb.
Number Theory 5 (2013), 181-197.
MathSciNet
- Lj. Baćić and A. Filipin, The extensibility of D(4)-pairs, Math. Commun. 18 (2013),
447-456.
MathSciNet
- A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
MathSciNet
CrossRef
- M. Bliznac Trebješanin, Extension of a Diophantine triple with the property D(4),
Acta Math. Hungar. 163 (2021), 213-246.
MathSciNet
CrossRef
- M. Bliznac Trebješanin and A. Filipin, Nonexistence of D(4)-quintuple, J. Number
Theory 194 (2019), 170-217.
MathSciNet
CrossRef
- A. Dujella, Diophantine m-tuples, available at
https://web.math.pmf.unizg.hr/~duje/dtuples.html.
- A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew.
Math. 566 (2004), 183-214.
MathSciNet
CrossRef
- A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport,
Quart. J. Math. Oxf. Ser. (2) 49 (1998), 291-306.
MathSciNet
CrossRef
- A. Dujella and A. M. S. Ramasamy, Fibonacci numbers and sets with the property
D(4), Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 401-412.
MathSciNet
CrossRef
- A. Filipin, On the size of sets in which xy + 4 is always a square, Rocky Mountain J.
Math. 39 (2009), 1195-1224.
MathSciNet
CrossRef
- A. Filipin, The extension of some D(4)-pairs, Notes Number Theory Discrete Math.
23 (2017), 126-135.
- A. Filipin, B. He and A. Togbé, On a family of two-parametric D(4)-triples, Glas.
Mat. Ser. III 47 (2012), 31-51.
MathSciNet
CrossRef
- B. He, Á. Pintér, A. Togbé and S. Yang, Another generalization of a theorem of Baker
and Davenport, J. Number Theory 182 (2018), 325-343.
MathSciNet
CrossRef
- B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer.
Math. Soc. 371 (2019), 6665-6709.
MathSciNet
CrossRef
- M. Laurent, Linear forms in two logarithms and interpolation determinants II, Acta
Arith. 133 (2008), 325-348.
MathSciNet
CrossRef
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in
logarithms of algebraic numbers II, Izv. Math. 64 (2000), 1217-1269.
MathSciNet
CrossRef
- T. Nagell, Introduction to Number Theory, Almqvist, Stockholm, Wiley, New York,
1951.
MathSciNet
Rad HAZU Home Page