Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 21-43.

THE PROBLEM OF THE EXTENSION OF D(4)-TRIPLE {1, b, c}

Kouèssi Norbert Adédji, Alan Filipin and Alain Togbé

Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, Bénin
e-mail: adedjnorb1988@gmail.com

Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića-Miošića 26, 10000 Zagreb, Croatia
e-mail: alan.filipin@grad.unizg.hr

Department of Mathematics, Statistics and Computer Science, Purdue University Northwest, 1401 S, U.S. 421, Westville IN 46391 USA
e-mail: atogbe@pnw.edu


Abstract.   In this paper, we study the extensibility of the D(4)-triple {1, b, c}, where 1 < b < c, by proving that such a set cannot be extended to an irregular D(4)-quadruple only for some values of c. For this study, we will use the classical methods based on the resolution of the binary recurrence sequences with new approaches in order to confirm a conjecture of uniqueness of such an extension.

2020 Mathematics Subject Classification.   11D09, 11B37, 11J68, 11J86, 11Y65.

Key words and phrases.   Diophantine m-tuples, system of Pellian equations, reduction method, linear form in logarithms.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ygjwrcpgoy/


References:

  1. Lj. Baćić and A. Filipin, On the extensibility of D(4)-pair {k - 2, k + 2}, J. Comb. Number Theory 5 (2013), 181-197.
    MathSciNet

  2. Lj. Baćić and A. Filipin, The extensibility of D(4)-pairs, Math. Commun. 18 (2013), 447-456.
    MathSciNet

  3. A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
    MathSciNet     CrossRef

  4. M. Bliznac Trebješanin, Extension of a Diophantine triple with the property D(4), Acta Math. Hungar. 163 (2021), 213-246.
    MathSciNet     CrossRef

  5. M. Bliznac Trebješanin and A. Filipin, Nonexistence of D(4)-quintuple, J. Number Theory 194 (2019), 170-217.
    MathSciNet     CrossRef

  6. A. Dujella, Diophantine m-tuples, available at https://web.math.pmf.unizg.hr/~duje/dtuples.html.

  7. A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
    MathSciNet     CrossRef

  8. A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxf. Ser. (2) 49 (1998), 291-306.
    MathSciNet     CrossRef

  9. A. Dujella and A. M. S. Ramasamy, Fibonacci numbers and sets with the property D(4), Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 401-412.
    MathSciNet     CrossRef

  10. A. Filipin, On the size of sets in which xy + 4 is always a square, Rocky Mountain J. Math. 39 (2009), 1195-1224.
    MathSciNet     CrossRef

  11. A. Filipin, The extension of some D(4)-pairs, Notes Number Theory Discrete Math. 23 (2017), 126-135.

  12. A. Filipin, B. He and A. Togbé, On a family of two-parametric D(4)-triples, Glas. Mat. Ser. III 47 (2012), 31-51.
    MathSciNet     CrossRef

  13. B. He, Á. Pintér, A. Togbé and S. Yang, Another generalization of a theorem of Baker and Davenport, J. Number Theory 182 (2018), 325-343.
    MathSciNet     CrossRef

  14. B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.
    MathSciNet     CrossRef

  15. M. Laurent, Linear forms in two logarithms and interpolation determinants II, Acta Arith. 133 (2008), 325-348.
    MathSciNet     CrossRef

  16. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II, Izv. Math. 64 (2000), 1217-1269.
    MathSciNet     CrossRef

  17. T. Nagell, Introduction to Number Theory, Almqvist, Stockholm, Wiley, New York, 1951.
    MathSciNet


Rad HAZU Home Page