Rad HAZU, Matematičke znanosti, Vol. 26 (2022), 1-20.

THE CONNECTED GRAPHS OBTAINED FROM FINITE PROJECTIVE PLANES

Atilla Akpinar

Department of Mathematics, Faculty of Science and Art, University of Bursa Uludag, Bursa, Turkey
e-mail: aakpinar@uludag.edu.tr


Abstract.   In this paper, we give a method of obtaining graphs from finite projective planes, by using an approach based method of taking each line of such a plane as a path graph. All the graphs obtained with the help of this method are connected and some properties of these graphs are determined.

2020 Mathematics Subject Classification.   05C10, 51E15, 05C38, 05C07.

Key words and phrases.   Finite projective plane, path, connected graph, degree sequence.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/mnlqgcrnxy


References:

  1. A. Akpinar, On some projective planes of finite order, Gazi University Journal of Science 18 (2005), 319-329.

  2. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory (2nd Edition), Springer, New York, 2012.
    MathSciNet     CrossRef

  3. N. L. Biggs, E. K. Lloyd and R. J. Wilson, Graph Theory 1736-1936, Oxford University Press, London, 1986.
    MathSciNet

  4. B. Bollobás, Modern Graph Theory, Springer, New York, 2013.
    MathSciNet     CrossRef

  5. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. Macmillan, London, 1976.
    MathSciNet

  6. R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhya 8 (1947), 107-166.
    MathSciNet

  7. R. H. Bruck and H. J. Ryser, The non-existence of certain finite projective planes, Can. J. Math. 1 (1949), 88-93.
    MathSciNet     CrossRef

  8. I. N. Cangul, A. Y. Gunes, M. Togan and A. S. Cevik, New formulae for Zagreb indices, AIP Conference Proceedings 1863(1), 300013 (2017).
    CrossRef

  9. I. N. Cangul, A. Y. Gunes, M. Togan and S. Delen, Connectedness of graphs and omega invariant, in: Proceedings Book of the 2nd Mediterranean International Conference of Pure & Applied Mathematics and Related Areas (MICOPAM 2019), Université d'Evry/Université Paris-Saclay, Paris, 2019, pp. 59-62.

  10. F. O. Erdogan and A. Dayioglu, Projective graphs obtained from projective planes, Adiyaman University Journal of Science 8 (2018), 115-128.

  11. H. Hamanaka, A. Nakamoto and Y. Suzuki, Rhombus tilings of an even-sided polygon and quadrangulations on the projective plane, Graphs Combin. 36 (2020), 561-571.
    MathSciNet     CrossRef

  12. C. W. H. Lam, G. Kolesova and L. Thiel, A computer search for finite projective planes of order 9, Discrete Math. 92 (1991), 187-195.
    MathSciNet     CrossRef

  13. V. Lokesha, B. S. Shetty, P. S. Ranjini, I. N. Cangul and A. S. Cevik, New bounds for Randić and GA indices, J. Inequal. Appl. 2013 (2013), 180.
    MathSciNet     CrossRef

  14. V. Lokesha, R. Shruti and A. S. Cevik, On certain topological indices of nanostructures using Q(G) and R(G) operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 67 (2018), 178-187.
    MathSciNet     CrossRef

  15. L. Nebesky, Geodesics and steps in a connected graph, Czechoslovak Math. J. 47 (1997), 149-161.
    MathSciNet     CrossRef

  16. L. Nebesky, The induced paths in a connected graph and a ternary relation determined by them, Math. Bohem. 127 (2002), 397-408.
    MathSciNet

  17. N. Nisse, Network decontamination, in: Distributed Computing by Mobile Entities, Lecture Notes in Computer Science 11340, Springer, 2019, pp. 516-548.
    CrossRef

  18. N. Nisse and R. P. Soares, On the monotonicity of process number, Discrete Appl. Math. 210 (2016), 103-111.
    MathSciNet     CrossRef

  19. P. S. K. Reddy, K. N. Prakasha and K. Gavirangaiah, Minimum dominating color energy of a graph, International Journal of Mathematical Combinatorics 3 (2017), 22-31.

  20. P. S. K. Reddy, K. N. Prakasha and K. Gavirangaiah, Minimum equitable dominating Randić energy of a graph, International J. Math. Combin. 3 (2017), 81-89.

  21. M. K. Siddiqui, M. Imran and M. A. Iqbal, Molecular descriptors of discrete dynamical system in fractal and Cayley tree type dendrimers, J. Appl. Math. Comput 61 (2019), 57-72.
    MathSciNet     CrossRef

  22. M. K. Siddiqui, N. A. Rehman and M. Imran, Topological indices of some families of nanostar dendrimers, Journal of Mathematical NanoScience 8 (2018), 91-103.
    CrossRef

  23. F. W. Stevenson, Projective Planes, WH Freeman Co., San Francisco, 1972.
    MathSciNet

  24. D. B. West, Introduction to Graph Theory, Pearson, 2001.
    MathSciNet


Rad HAZU Home Page