Rad HAZU, Matematičke znanosti, Vol. 25 (2021), 107-141.
HIERARCHICAL AND DYNAMIC THRESHOLD PAILLIER CRYPTOSYSTEM WITHOUT TRUSTED DEALER
Andreas Klinger, Stefan Wüller, Giulia Traverso and Ulrike Meyer
RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
e-mail: klinger@itsec.rwth-aachen.de
RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
e-mail: wueller@itsec.rwth-aachen.de
EY Switzerland, Rue du Simplon 35, 1006 Lausanne, Switzerland
e-mail: giutra90@icloud.com
RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
e-mail: meyer@itsec.rwth-aachen.de
Abstract. We propose the first hierarchical and dynamic threshold
Paillier cryptosystem without trusted dealer and prove its security in the
malicious adversary model. The new cryptosystem is fully distributed, i. e.,
public and private key generation is performed without a trusted dealer.
The private key is shared with a hierarchical and dynamic secret sharing
scheme over the integers. In such a scheme not only the amount of shareholders,
but also their levels in the hierarchy decide whether or not they
can reconstruct the secret and new shareholders can be added or removed
without reconstruction of the secret.
2020 Mathematics Subject Classification.
94A60, 94A62.
Key words and phrases. Homomorphic cryptosystem, threshold cryptosystem, hierarchical
secret sharing, dynamic secret sharing, Paillier, SMPC, Birkhoff interpolation.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/mnlqgc582y
References:
- S. G. Akl and P. D. Taylor, Cryptographic solution to a problem of access control in a
hierarchy, ACM Trans. Comput. Syst. 1 (3) (1983), 239-248.
CrossRef
- A. Beimel, T. Tassa and E. Weinreb, Characterizing ideal weighted threshold secret
sharing, in: Theory of Cryptography, Lecture Notes in Comput. Sci. 3378, Springer,
Berlin, 2005, pp. 600-619.
MathSciNet
CrossRef
- J. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, in:
Advances in Cryptology – CRYPTO 88, Lecture Notes in Comput. Sci. 403, Springer,
New York, 1990, pp. 27-35.
MathSciNet
CrossRef
- G. R. Blakley, Safeguarding cryptographic keys,
in: Proceedings of International Workshop on Managing Requirements Knowledge, 1979, pp. 313-317.
CrossRef
- P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard,
J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach and T. Toft, Secure
multiparty computation goes live, in: Financial Cryptography and Data Security,
Lecture Notes in Comput. Sci. 5628, Springer, Berlin, 2009, pp. 325-343.
CrossRef
- D. Boneh and M. Franklin, Efficient generation of shared RSA keys,
in: Advances in Cryptology - CRYPTO '97, Lecture Notes in Comput. Sci. 1294, Springer, Berlin,
1997, pp. 425-439.
CrossRef
- E. F. Brickell, Some ideal secret sharing schemes, in: Advances in Cryptology - EUROCRYPT 89,
Lecture Notes in Comput. Sci. 434, Springer, Berlin, 1990, pp. 468-475.
MathSciNet
CrossRef
- C. Clifton, M. Kantarcioglu, A. Doan, G. Schadow, J. Vaidya, A. Elmagarmid and
D. Suciu, Privacy-preserving data integration and sharing, in: Proceedings of the 9th
ACM SIGMOD workshop on Research issues in data mining and knowledge discovery
- DMKD ’04, ACM Press, 2004, pp. 19-26.
CrossRef
- R. Cramer, I. Damgård and J. B. Nielsen, Multiparty computation from threshold
homomorphic encryption, in: Advances in Cryptology – EUROCRYPT 2001, Lecture
Notes in Comput. Sci. 2045, Springer, Berlin, 2001, pp. 280-300.
MathSciNet
CrossRef
- I. Damgård and M. Jurik, A length-flexible threshold cryptosystem with applications,
in: Information Security and Privacy, Lecture Notes in Comput. Sci. 2727, Springer,
Berlin, 2003, pp. 350-364.
CrossRef
- I. Damgård and M. Koprowski, Practical threshold RSA signatures without a trusted
dealer, in: Advances in Cryptology - EUROCRYPT 2001, Lecture Notes in Comput. Sci. 2045,
Springer, Berlin, 2001, pp. 152-165.
MathSciNet
CrossRef
- I. Damgård and J. B. Nielsen, Universally composable efficient multiparty computation
from threshold homomorphic encryption, in: Advances in Cryptology - CRYPTO 2003,
Lecture Notes in Comput. Sci. 2729, Springer, Berlin, 2003, pp. 247-264.
MathSciNet
CrossRef
- Y. Desmedt, Society and group oriented cryptography: a new concept, in: Advances
in Cryptology - CRYPTO 87, Lecture Notes in Comput. Sci. 293, Springer, Berlin,
1988, pp. 120-127.
CrossRef
- Y. Desmedt and Y. Frankel, Threshold cryptosystems, in: Advances in Cryptology -
CRYPTO 89 Proceedings, Lecture Notes in Comput. Sci. 435, Springer, New York,
1990, pp. 307-315.
CrossRef
- O. Farràs and C. Padró, Ideal hierarchical secret sharing schemes, in: Theory of Cryptography,
Lecture Notes in Comput. Sci. 5978, Springer, Berlin, 2010, pp. 219-236.
MathSciNet
CrossRef
- P.-A. Fouque, G. Poupard and J. Stern, Sharing decryption in the context of voting or lotteries,
in: Financial Cryptography, Lecture Notes in Comput. Sci. 1962, Springer, Berlin, 2001, pp. 90-104.
CrossRef
- R. Gennaro, S. Halevi, H. Krawczyk and T. Rabin, Threshold RSA for dynamic and
ad-hoc groups, in: Advances in Cryptology - EUROCRYPT 2008, Lecture Notes in
Comput. Sci. 4965, Springer, Berlin, 2008, pp. 88-107.
MathSciNet
CrossRef
- H. Ghodosi, J. Pieprzyk and R. Safavi-Naini, Dynamic threshold cryptosystems (A new
scheme in group oriented cryptography), in: Proceedings of PRAGOCRYPT 96 (1996),
pp. 370-379.
- H. Ghodosi, J. Pieprzyk and R. Safavi-Naini, Secret sharing in multilevel and compartmented
groups, in: Information Security and Privacy, Lecture Notes in Comput. Sci. 1438,
Springer, Berlin, 1998, pp. 367-378.
MathSciNet
CrossRef
- O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University Press,
2003.
MathSciNet
CrossRef
- O. Goldreich, Foundations of Cryptography: Basic Applications, Cambridge University
Press, 2004.
CrossRef
- D. Grigoriev and I. Ponomarenko, Homomorphic public-key cryptosystems and encrypting
Boolean circuits, Appl. Algebra Engrg. Comm. Comput. 17 (2006), 239-255.
MathSciNet
CrossRef
- L. Harn, H. Lin and S. Yang, Threshold cryptosystem with multiple secret sharing
policies, IEE Proceedings - Computers and Digital Techniques 141 (1994), 142-144.
- C. Hazay and Y. Lindell, Efficient Secure Two-Party Protocols, Springer, Berlin, 2010.
CrossRef
- M. Ito, A. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure,
Electron. Comm. Japan Part III Fund. Electron. Sci. 72 (9) (1989), 56-64.
MathSciNet
CrossRef
- C. S. Laih and L. Harn, Generalized threshold cryptosystems, in: Advances in Cryptology
– ASIACRYPT '91, Lecture Notes in Comput. Sci. 2894, Springer, Berlin, 1993,
pp. 159-166.
MathSciNet
CrossRef
- G. G. Lorentz, K. Jetter and S. Riemenschneider, Birkhoff Interpolation, Encyclopedia
of Mathematics and its Applications 19, Cambridge University Press, 1983.
MathSciNet
CrossRef
- R. Mendes and J. P. Vilela, Privacy-preserving data mining: Methods, metrics, and
applications, IEEE Access 5 (2017), 10562–10582.
CrossRef
- T. Nishide and K. Sakurai, Distributed Paillier cryptosystem without trusted dealer,
in: Information Security Applications, Lecture Notes in Comput. Sci. 6513, Springer,
Berlin, 2010, pp. 44-60.
CrossRef
- T. Okamoto, An efficient divisible electronic cash scheme, in: Advances in Cryptology
- CRYPTO '95, Lecture Notes in Comput. Sci. 963, Springer, Berlin, 1995, pp. 438-451.
CrossRef
- P. Paillier, Public-key cryptosystems based on composite degree residuosity classes,
in: Advances in Cryptology - EUROCRYPT 99, Lecture Notes in Comput. Sci. 1592,
Springer, Berlin, 1999, pp. 223-238.
MathSciNet
CrossRef
- N. Pakniat, M. Noroozi and Z. Eslami, Distributed key generation protocol with hierarchical
threshold access structure, IET Information Security 9 (2015), 248-255.
CrossRef
- T. P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing,
in: Advances in Cryptology - CRYPTO 91, Lecture Notes in Comput. Sci. 576,
Springer, Berlin, 1991, pp. 129-140.
MathSciNet
CrossRef
- T. P. Pedersen, A threshold cryptosystem without a trusted party, in: Advances in
Cryptology - EUROCRYPT 91, Lecture Notes in Comput. Sci. 547, Springer, Berlin,
1991, pp. 522-526.
CrossRef
- T. Rabin, A simplified approach to threshold and proactive RSA, in: Advances in
Cryptology - CRYPTO ’98, Lecture Notes in Comput. Sci. 1462, Springer, Berlin,
1998, pp. 89-104.
CrossRef
- A. Shamir, How to share a secret, Commun. ACM 22 (1979), 612-613.
MathSciNet
CrossRef
- G. J. Simmons, How to (really) share a secret, in: Advances in Cryptology - CRYPTO
88, Lecture Notes in Comput. Sci. 403, Springer, New York, 1990, pp. 390-448.
MathSciNet
CrossRef
- T. Tassa, Hierarchical threshold secret sharing, J. Cryptology 20 (2007), 237-264.
MathSciNet
CrossRef
- G. Traverso, D. Demirel and J. Buchmann, Dynamic and verifiable hierarchical secret
sharing, in: Information Theoretic Security, Lecture Notes in Comput. Sci. 10015,
Springer, Cham, 2016, pp. 24-43.
MathSciNet
CrossRef
- G. Traverso, D. Demirel and J. Buchmann, Performing computations on hierarchically
shared secrets, in: Progress in Cryptology - AFRICACRYPT 2018, Lecture Notes in
Comput. Sci. 10831, Springer, Cham, 2018, pp. 141-161.
MathSciNet
CrossRef
Rad HAZU Home Page