Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 131-148.

CONTROL DESIGN OF AN HIV-1 MODEL

Amel Rahmoun, Djamila Benmerzouk and Bedr'Eddine Ainseba

Department of Mathematics, Tlemcen University, BP 119,13000 Tlemcen, Algeria
e-mail: amal.rahmoun@mail.univ-tlemcen.dz
e-mail: d_benmerzouk@yahoo.fr

Bordeaux Mathematics Institute, UMR CNRS 52 51, Case 36, Université Victor Segalen Bordeaux 2, 3 ter place de la Victoire, F 33076 Bordeaux Cedex, France
e-mail: Bedreddine.ainseba@u-bordeaux.fr


Abstract.   In this paper, we formulate a dynamic mathematical model that describes the interaction of the immune system with the human immunodeficiency virus (HIV), combined with nonlinear continuous feedback control. The detailed computations of two linearizing inputs is presented. It results in the design of a first fully linearizable system and a second partially linearizable one. The proposed controllers have the ability to drive the system close to the healthy equilibrium state. Numerical simulations demonstrate them effectiveness by maintaining virus concentration in very low levels and healthy cells in satisfactory levels.

2020 Mathematics Subject Classification.   92B99, 93C10, 93D15, 16W25, 37M05.

Key words and phrases.   Mathematical biology, nonlinear systems, stabilization of systems by feedback, Lie derivatives, simulations.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/yk3jwhx3j9


References:

  1. B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne and E. S. Rosenberg, HIV dynamics: modeling, data analysis, and optimal treatments protocols, J. Comput. Appl. Math. 184 (2005), 10-49.
    MathSciNet     CrossRef

  2. F. Alazabi, M. Zohdi and A. Ezzabi, A Regulator Design for Nonlinear HIV-1 Infection System, International Journal of Intelligent Control and Systems 17 (2012), 1-6.

  3. D. J. Auerbach et al., Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor, Proceeding of the National Academy of Sciences of the United States of America 109(24) (2012), 9569-9574.
    CrossRef

  4. M. E. Brandt and G. Chen, Feedback control of a biomedical model of HIV-1, IEEE Transactions on biomedical engineering 48 (2001), 754-759.
    CrossRef

  5. C. M. Costantino, A. Gupta, A. W. Yewdall et al., Cannabinoid Receptor 2-Mediated Attenuation of CXCR4-tropic HIV Infection in Primary CD4+ T Cells, PLoS ONE 7(3) (2012), e33961.
    CrossRef

  6. I. Craig and X. Xia, Can HIV-AIDS be controlled?, IEEE Control Syst. Mag. 25 (2005), 80-83.
    CrossRef

  7. N. Dereuddre-Bosquet, L. Morellato-Castillo, J. Brouwers et al., MiniCD4 Microbicide Prevents HIV Infection of Human Mucosal Explants and Vaginal Transmission of SHIV(162P3) in Cynomolgus Macaques, PLoS Pathog 8(12) (2012), e1003071.
    CrossRef

  8. K. Fister, S. Lenhart and J. S. McNally, Optimizing Chemotherapy in an HIV Mode, Electronic Journal of Differential Equations 1998 (1998), no. 32, 12 pp.
    MathSciNet

  9. J. K. Hedrick and A. Girard, Control of nonlinear dynamic systems theory and applications, Class Notes, 2005.

  10. H. S. Henney, K. Kuribayashi, D. E. Kern et al., Interleukin-2 augments natural killer cell activity, Nature 291 (1981), 335-338.
    CrossRef

  11. R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge University Press, 1985.
    MathSciNet     CrossRef

  12. A. Isidori, Nonlinear Control Systems, 3rd edition, Springer, New York, 1995.
    MathSciNet     CrossRef

  13. H. R. Joshi, S. Lenhart, M. Y. Li and L. Wang, Optimal Control Methods Applied to Disease Models, in: Mathematical studies on human disease dynamics, Contemp. Math. 410 (2010), 185-207.
    MathSciNet     CrossRef

  14. D. Kirschner, S. Lenhart and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol. 35 (1997), 775-792.
    MathSciNet     CrossRef

  15. D. E. Kirschner, F.Webb and M. Cloyd, Model of HIV-1 Disease Progression Based on Virus-Induced Lymph Node Homing and Homing-Induced Apoptosis of CD4+ Lymphocytes, Journal of Acquired Immune Deficiency Syndromes 24 (2000), 352-362.
    CrossRef

  16. L. Martínez-Muñoza, R. Barrosoa, S. Y. Dyrhauga et al., CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface, Proceedings of the National Academy of Sciences of the USA 111 (19) (2014), E1960-E1969.
    CrossRef

  17. M.-J. Mhawej, C. H. Moog, F. Biafore and C. Brunet-François, Control of the HIV infection and drug dosage, Biomedical Signal Processing and Control 5 (2010), 45-52.
    CrossRef

  18. L. Mollet and B. Autran, Lymphocytes T cytotoxiques spécifiques du virus de l'immunodéficience humaine, Virologie 5(1) (2001), 23-34.

  19. M. A. Nowak and R. M. May, Virus Dynamics. Oxford University Press, New York, 2000.
    MathSciNet

  20. A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 Dynamics in vivo, SIAM Rev. 41 (1999), 3-44.
    MathSciNet     CrossRef

  21. A. Rahmoun, B. Ainseba and D. Benmerzouk, Optimal Control Applied on an HIV-1 Within Host Model, Math. Methods Appl. Sci. 39 (2016), 2118-2135.
    MathSciNet     CrossRef

  22. A. Rahmoun, D. Benmerzouk and B. Ainseba, Bifurcation Analysis of the HIV-1 Within Host Model, Math. Methods Appl. Sci. 39 (2016), 1924-1934.
    MathSciNet     CrossRef

  23. M. A. Shaker and H. M. Younes, Interleukin-2: evaluation of routes of administration and current delivery systems in cancer therapy, J Pharm Sci 98(7) (2009), 2268-2298.
    CrossRef

  24. P. Tebas, D. Stein, W. Tang et al., Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV, The New England Journal of Medicine 370 (2014), 901-910.
    CrossRef

  25. L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Math. Biosci. 200 (2006), 44-57.
    MathSciNet     CrossRef

  26. www.aidsinfo.nih.gov (2018)

  27. T. Xiaohong and X. Rui, Global stability and Hopf bifurcation of an HIV-1 infection model with saturation incidence and delayed CTL immune response, Appl. Math. Comput. 237 (2014), 146-154.
    MathSciNet     CrossRef

  28. L. Yongqi and L. Xuanliang, Global properties and bifurcation analysis of an HIV-1 infection model with two target cells, Comput. Appl. Math. 37 (2018), 3455-3472.
    MathSciNet     CrossRef


Rad HAZU Home Page