Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 131-148.
CONTROL DESIGN OF AN HIV-1 MODEL
Amel Rahmoun, Djamila Benmerzouk and Bedr'Eddine Ainseba
Department of Mathematics, Tlemcen University, BP 119,13000 Tlemcen, Algeria
e-mail: amal.rahmoun@mail.univ-tlemcen.dz
e-mail: d_benmerzouk@yahoo.fr
Bordeaux Mathematics Institute, UMR CNRS 52 51, Case 36,
Université Victor Segalen Bordeaux 2, 3 ter place de la Victoire,
F 33076 Bordeaux Cedex, France
e-mail: Bedreddine.ainseba@u-bordeaux.fr
Abstract. In this paper, we formulate a dynamic mathematical
model that describes the interaction of the immune system with the human
immunodeficiency virus (HIV), combined with nonlinear continuous
feedback control. The detailed computations of two linearizing inputs is
presented. It results in the design of a first fully linearizable system and a
second partially linearizable one. The proposed controllers have the ability
to drive the system close to the healthy equilibrium state. Numerical simulations
demonstrate them effectiveness by maintaining virus concentration
in very low levels and healthy cells in satisfactory levels.
2020 Mathematics Subject Classification.
92B99, 93C10, 93D15, 16W25, 37M05.
Key words and phrases. Mathematical biology, nonlinear systems, stabilization of systems
by feedback, Lie derivatives, simulations.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yk3jwhx3j9
References:
- B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne
and E. S. Rosenberg, HIV dynamics: modeling, data analysis, and optimal treatments
protocols, J. Comput. Appl. Math. 184 (2005), 10-49.
MathSciNet
CrossRef
- F. Alazabi, M. Zohdi and A. Ezzabi, A Regulator Design for Nonlinear HIV-1 Infection
System, International Journal of Intelligent Control and Systems 17 (2012), 1-6.
- D. J. Auerbach et al., Identification of the platelet-derived chemokine CXCL4/PF-4
as a broad-spectrum HIV-1 inhibitor, Proceeding of the National Academy of Sciences
of the United States of America 109(24) (2012), 9569-9574.
CrossRef
- M. E. Brandt and G. Chen, Feedback control of a biomedical model of HIV-1, IEEE
Transactions on biomedical engineering 48 (2001), 754-759.
CrossRef
- C. M. Costantino, A. Gupta, A. W. Yewdall et al., Cannabinoid Receptor 2-Mediated
Attenuation of CXCR4-tropic HIV Infection in Primary CD4+ T Cells, PLoS ONE
7(3) (2012), e33961.
CrossRef
- I. Craig and X. Xia, Can HIV-AIDS be controlled?, IEEE Control Syst. Mag.
25 (2005), 80-83.
CrossRef
- N. Dereuddre-Bosquet, L. Morellato-Castillo, J. Brouwers et al., MiniCD4 Microbicide
Prevents HIV Infection of Human Mucosal Explants and Vaginal Transmission of
SHIV(162P3) in Cynomolgus Macaques, PLoS Pathog 8(12) (2012), e1003071.
CrossRef
- K. Fister, S. Lenhart and J. S. McNally, Optimizing Chemotherapy in an HIV Mode,
Electronic Journal of Differential Equations 1998 (1998), no. 32, 12 pp.
MathSciNet
- J. K. Hedrick and A. Girard, Control of nonlinear dynamic systems theory and applications,
Class Notes, 2005.
- H. S. Henney, K. Kuribayashi, D. E. Kern et al., Interleukin-2 augments natural killer
cell activity, Nature 291 (1981), 335-338.
CrossRef
- R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge University Press, 1985.
MathSciNet
CrossRef
- A. Isidori, Nonlinear Control Systems, 3rd edition, Springer, New York, 1995.
MathSciNet
CrossRef
- H. R. Joshi, S. Lenhart, M. Y. Li and L. Wang, Optimal Control Methods Applied to
Disease Models, in: Mathematical studies on human disease dynamics,
Contemp. Math. 410 (2010), 185-207.
MathSciNet
CrossRef
- D. Kirschner, S. Lenhart and S. Serbin, Optimal control of the chemotherapy of HIV,
J. Math. Biol. 35 (1997), 775-792.
MathSciNet
CrossRef
- D. E. Kirschner, F.Webb and M. Cloyd, Model of HIV-1 Disease Progression Based on
Virus-Induced Lymph Node Homing and Homing-Induced Apoptosis of CD4+ Lymphocytes,
Journal of Acquired Immune Deficiency Syndromes 24 (2000), 352-362.
CrossRef
- L. Martínez-Muñoza, R. Barrosoa, S. Y. Dyrhauga et al., CCR5/CD4/CXCR4
oligomerization prevents HIV-1 gp120IIIB binding to the cell surface, Proceedings
of the National Academy of Sciences of the USA 111 (19) (2014), E1960-E1969.
CrossRef
- M.-J. Mhawej, C. H. Moog, F. Biafore and C. Brunet-François, Control of the HIV infection and drug
dosage, Biomedical Signal Processing and Control 5 (2010), 45-52.
CrossRef
- L. Mollet and B. Autran, Lymphocytes T cytotoxiques spécifiques du virus de
l'immunodéficience humaine, Virologie 5(1) (2001), 23-34.
- M. A. Nowak and R. M. May, Virus Dynamics. Oxford University Press, New York,
2000.
MathSciNet
- A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 Dynamics in vivo, SIAM
Rev. 41 (1999), 3-44.
MathSciNet
CrossRef
- A. Rahmoun, B. Ainseba and D. Benmerzouk, Optimal Control Applied on an HIV-1
Within Host Model, Math. Methods Appl. Sci. 39 (2016), 2118-2135.
MathSciNet
CrossRef
- A. Rahmoun, D. Benmerzouk and B. Ainseba, Bifurcation Analysis of the HIV-1
Within Host Model, Math. Methods Appl. Sci. 39 (2016), 1924-1934.
MathSciNet
CrossRef
- M. A. Shaker and H. M. Younes, Interleukin-2: evaluation of routes of administration
and current delivery systems in cancer therapy, J Pharm Sci 98(7) (2009), 2268-2298.
CrossRef
- P. Tebas, D. Stein, W. Tang et al., Gene Editing of CCR5 in Autologous CD4 T Cells
of Persons Infected with HIV, The New England Journal of Medicine 370 (2014),
901-910.
CrossRef
- L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for
HIV infection of CD4+ T cells, Math. Biosci. 200 (2006), 44-57.
MathSciNet
CrossRef
- www.aidsinfo.nih.gov (2018)
- T. Xiaohong and X. Rui, Global stability and Hopf bifurcation of an HIV-1 infection
model with saturation incidence and delayed CTL immune response, Appl. Math.
Comput. 237 (2014), 146-154.
MathSciNet
CrossRef
- L. Yongqi and L. Xuanliang, Global properties and bifurcation analysis of an HIV-1
infection model with two target cells, Comput. Appl. Math. 37 (2018), 3455-3472.
MathSciNet
CrossRef
Rad HAZU Home Page