Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 117-130.

q-FRACTIONAL DIRAC TYPE SYSTEMS

Bilender P. Allahverdiev and Hüseyin Tuna

Department of Mathematics, Faculty of Arts and Sciences, Süleyman Demirel University, 32260 Isparta, Turkey
e-mail: bilenderpasaoglu@sdu.edu.tr

Department of Mathematics, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, 15030 Burdur, Turkey
e-mail: hustuna@gmail.com


Abstract.   This paper is devoted to study a regular q-fractional Dirac type system. We investigate the properties of the eigenvalues and the eigenfunctions of this system. By using a fixed point theorem we give a sufficient condition on eigenvalues for the existence and uniqueness of the associated eigenfunctions.

2020 Mathematics Subject Classification.   39A13, 34L40, 34L10, 26A33.

Key words and phrases.   q-fractional Dirac operator, eigenvalues, eigenfunctions.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/mwo1vcjxvy


References:

  1. R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Phil. Soc. 66 (1969), 365-370.
    MathSciNet     CrossRef

  2. B. P. Allahverdiev and H. Tuna, One-dimensional q-Dirac equation, Math. Meth. Appl. Sci. 40 (2017), 7287-7306.
    MathSciNet     CrossRef

  3. B. P. Allahverdiev and H. Tuna, Spectral analysis of q-fractional Sturm-Liouville operators, Electr. J. Differential Equations 2017 (2017), Paper No. 136, 17 pp.
    MathSciNet

  4. W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc. (2) 15 (1966/1967), 135-140.
    MathSciNet     CrossRef

  5. M. A. Al-Towailb, A q-fractional approach to the regular Sturm-Liouville problems, Electron. J. Differential Equations 2017 (2017), Paper No. 88, 13 pp.
    MathSciNet

  6. M. A. Al-Towailb, The solution of certain triple q-integral equations in fractional q-calculus approach, Arab. J. Math. Sci. 25 (2019), 17-28.
    MathSciNet     CrossRef

  7. M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and Equations, Lecture Notes in Mathematics, vol. 2056, Springer, Heidelberg, 2012.
    MathSciNet     CrossRef

  8. G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, 1999.
    MathSciNet     CrossRef

  9. N. M. Atakishiyev, A. U. Klimyk and K. B. Wolf, A discrete quantum model of the harmonic oscillator, J. Phys. A: Math. Theor. 41 (2008), no. 8, 085201, 14 pp.
    MathSciNet     CrossRef

  10. L. C. Biedenharn, The quantum group SUq(2) and a q-analogue of the boson operators, J. Phys. A: Math. Gen. 22 (1989), L873–L878.
    MathSciNet

  11. P. Collas and D. Klein, The Dirac Equation in Curved Spacetime, A Guide for Calculations, SpringerBriefs in Physics Series, Springer, Cham, 2019.
    MathSciNet     CrossRef

  12. R. Díaz and E. Pariguán, An example of Feynman–Jackson integrals, J. Phys. A: Math. Theor. 40 (2007), 1265-1272.
    MathSciNet     CrossRef

  13. T. Ernst, The History of q-Calculus and a New Method, U. U. D. M. Report (2000):16, Department of Mathematics, Uppsala University, 2000.

  14. K. Ey, A. Ruffing and S. Suslov, Method of separation of the variables for basic analogs of equations of mathematical physics, Ramanujan J. 13 (2007) 407-447.
    MathSciNet     CrossRef

  15. R. A. C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), No. 70, 10 pp.
    MathSciNet

  16. R. J. Finkelstein, q-uncertainty relations, Internat. J. Modern Phys. A 13 (1998), 1795-1803.
    MathSciNet     CrossRef

  17. G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Cambridge Univ. Press, 2004.
    MathSciNet     CrossRef

  18. V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, Berlin-Heidelberg, 2002.
    MathSciNet     CrossRef

  19. B. M. Levitan and I. S. Sargsjan, Introduction to Spectral Theory: Self adjoint Ordinary Differential Operators, American Mathematical Society, Providence, RI, USA, 1975.
    MathSciNet

  20. X. Li, Z. Han, S. Sun and H. Lu, Boundary value problems for fractional q-difference equations with nonlocal conditions, Adv. Differ. Equ. 2014 (2014), Paper No. 57, 16 pp.
    MathSciNet

  21. X. Li and Z. Han, Boundary value problems of fractional q-difference Schrödinger equations, Appl. Math. Lett. 46 (2015), 100-105.
    MathSciNet     CrossRef

  22. S. Liang, Positive solutions for singular boundary value problem with fractional qdifferences, Bull. Malays. Math. Sci. Soc. 38 (2015), 647-666.
    MathSciNet     CrossRef

  23. A. Lorek, A. Ruffing and J. Wess, A q-deformation of the harmonic oscillator, Z. Phys. C 74 (1997), 369-377.
    MathSciNet     CrossRef

  24. A. J. Macfarlane, On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q, J. Phys. A: Math. Gen. 22 (1989), 4581-4588.
    MathSciNet

  25. Z. S. I. Mansour, On fractional q-Sturm-Liouville problems, J. Fixed Point Theory Appl. 19 (2017), 1591-1612.
    MathSciNet     CrossRef

  26. Z. S. I. Mansour, Variational methods for fractional q-Sturm–Liouville problems, Bound. Value Probl. 2016 (2016), Paper No. 150, 31 pp.
    MathSciNet     CrossRef

  27. P. M. Rajković, S. D. Marinković and M. S. Stanković, A generalization of the concept of q-fractional integrals, Acta Math. Sin. (Engl. Ser.) 25 (2009), 1635-1646.
    MathSciNet     CrossRef

  28. M. S. Stanković, P. M. Rajković and S. D. Marinković, On q-fractional order derivatives of Riemann-Liouville and Caputo type, (2009), http://arxiv.org/abs/0909.0387

  29. B. Thaller, The Dirac Equation, Springer-Verlag, Berlin, 1992.
    MathSciNet     CrossRef

  30. M. R. Ubriaco, Time evolution in quantum mechanics on the quantum line, Phys. Lett. A 163 (1992) 1-4.
    MathSciNet     CrossRef

  31. J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258, Springer, Berlin, 1987.
    MathSciNet     CrossRef


Rad HAZU Home Page