Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 117-130.
q-FRACTIONAL DIRAC TYPE SYSTEMS
Bilender P. Allahverdiev and Hüseyin Tuna
Department of Mathematics, Faculty of Arts and Sciences,
Süleyman Demirel University, 32260 Isparta, Turkey
e-mail: bilenderpasaoglu@sdu.edu.tr
Department of Mathematics, Faculty of Arts and Sciences,
Mehmet Akif Ersoy University, 15030 Burdur, Turkey
e-mail: hustuna@gmail.com
Abstract. This paper is devoted to study a regular q-fractional Dirac
type system. We investigate the properties of the eigenvalues and the
eigenfunctions of this system. By using a fixed point theorem we give a
sufficient condition on eigenvalues for the existence and uniqueness of the
associated eigenfunctions.
2020 Mathematics Subject Classification.
39A13, 34L40, 34L10, 26A33.
Key words and phrases. q-fractional Dirac operator, eigenvalues, eigenfunctions.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/mwo1vcjxvy
References:
- R. P. Agarwal, Certain fractional q-integrals and q-derivatives,
Proc. Camb. Phil. Soc. 66 (1969), 365-370.
MathSciNet
CrossRef
- B. P. Allahverdiev and H. Tuna, One-dimensional q-Dirac equation, Math. Meth. Appl.
Sci. 40 (2017), 7287-7306.
MathSciNet
CrossRef
- B. P. Allahverdiev and H. Tuna, Spectral analysis of q-fractional Sturm-Liouville operators,
Electr. J. Differential Equations 2017 (2017), Paper No. 136, 17 pp.
MathSciNet
- W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinb. Math.
Soc. (2) 15 (1966/1967), 135-140.
MathSciNet
CrossRef
- M. A. Al-Towailb, A q-fractional approach to the regular Sturm-Liouville problems,
Electron. J. Differential Equations 2017 (2017), Paper No. 88, 13 pp.
MathSciNet
- M. A. Al-Towailb, The solution of certain triple q-integral equations in fractional
q-calculus approach, Arab. J. Math. Sci. 25 (2019), 17-28.
MathSciNet
CrossRef
- M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and Equations, Lecture Notes
in Mathematics, vol. 2056, Springer, Heidelberg, 2012.
MathSciNet
CrossRef
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, 1999.
MathSciNet
CrossRef
- N. M. Atakishiyev, A. U. Klimyk and K. B. Wolf, A discrete quantum model of the
harmonic oscillator, J. Phys. A: Math. Theor. 41 (2008), no. 8, 085201, 14 pp.
MathSciNet
CrossRef
- L. C. Biedenharn, The quantum group SUq(2) and a
q-analogue of the boson operators,
J. Phys. A: Math. Gen. 22 (1989), L873–L878.
MathSciNet
- P. Collas and D. Klein, The Dirac Equation in Curved Spacetime, A Guide for Calculations,
SpringerBriefs in Physics Series, Springer, Cham, 2019.
MathSciNet
CrossRef
- R. Díaz and E. Pariguán, An example of Feynman–Jackson integrals, J. Phys. A:
Math. Theor. 40 (2007), 1265-1272.
MathSciNet
CrossRef
- T. Ernst, The History of q-Calculus and a New Method, U. U. D. M. Report (2000):16,
Department of Mathematics, Uppsala University, 2000.
- K. Ey, A. Ruffing and S. Suslov, Method of separation of the variables for basic analogs
of equations of mathematical physics, Ramanujan J. 13 (2007) 407-447.
MathSciNet
CrossRef
- R. A. C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems,
Electron. J. Qual. Theory Differ. Equ. 2010 (2010), No. 70, 10 pp.
MathSciNet
- R. J. Finkelstein, q-uncertainty relations,
Internat. J. Modern Phys. A 13 (1998), 1795-1803.
MathSciNet
CrossRef
- G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Cambridge
Univ. Press, 2004.
MathSciNet
CrossRef
- V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, Berlin-Heidelberg, 2002.
MathSciNet
CrossRef
- B. M. Levitan and I. S. Sargsjan, Introduction to Spectral Theory: Self adjoint Ordinary
Differential Operators, American Mathematical Society, Providence, RI, USA,
1975.
MathSciNet
- X. Li, Z. Han, S. Sun and H. Lu, Boundary value problems for fractional q-difference equations
with nonlocal conditions, Adv. Differ. Equ. 2014 (2014), Paper No. 57, 16 pp.
MathSciNet
- X. Li and Z. Han, Boundary value problems of fractional q-difference Schrödinger
equations, Appl. Math. Lett. 46 (2015), 100-105.
MathSciNet
CrossRef
- S. Liang, Positive solutions for singular boundary value problem with fractional qdifferences,
Bull. Malays. Math. Sci. Soc. 38 (2015), 647-666.
MathSciNet
CrossRef
- A. Lorek, A. Ruffing and J. Wess, A q-deformation of the harmonic oscillator, Z.
Phys. C 74 (1997), 369-377.
MathSciNet
CrossRef
- A. J. Macfarlane, On q-analogues of the quantum harmonic oscillator and the quantum
group SU(2)q, J. Phys. A: Math. Gen. 22 (1989), 4581-4588.
MathSciNet
- Z. S. I. Mansour, On fractional q-Sturm-Liouville problems, J. Fixed Point Theory
Appl. 19 (2017), 1591-1612.
MathSciNet
CrossRef
- Z. S. I. Mansour, Variational methods for fractional q-Sturm–Liouville problems,
Bound. Value Probl. 2016 (2016), Paper No. 150, 31 pp.
MathSciNet
CrossRef
- P. M. Rajković, S. D. Marinković and M. S. Stanković,
A generalization of the concept of q-fractional
integrals, Acta Math. Sin. (Engl. Ser.) 25 (2009), 1635-1646.
MathSciNet
CrossRef
- M. S. Stanković, P. M. Rajković and S. D. Marinković,
On q-fractional order derivatives
of Riemann-Liouville and Caputo type, (2009), http://arxiv.org/abs/0909.0387
- B. Thaller, The Dirac Equation, Springer-Verlag, Berlin, 1992.
MathSciNet
CrossRef
- M. R. Ubriaco, Time evolution in quantum mechanics on the quantum line, Phys.
Lett. A 163 (1992) 1-4.
MathSciNet
CrossRef
- J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in
Mathematics 1258, Springer, Berlin, 1987.
MathSciNet
CrossRef
Rad HAZU Home Page