Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 99-116.

ESTIMATES OF THE LOGARITHMIC DERIVATIVE NEAR A SINGULAR POINT AND APPLICATIONS

Saada Hamouda

Laboratory of pure and applied mathematics, University of Mostaganem (UMAB), Algeria
e-mail: saada.hamouda@univ-mosta.dz


Abstract.   In this paper, we will give estimates near z = 0 for the logarithmic derivative | f (k)(z) / f(z) | where f is a meromorphic function in a region of the form D(0,R) = {zC : 0 < |z| < R}. Some applications on the growth of solutions of linear differential equations near a singular point are given.

2020 Mathematics Subject Classification.   34M10, 30D35.

Key words and phrases.   Logarithmic derivative estimates, Nevanlinna theory, linear differential equations, growth of solutions, singular point.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/m3v76teqny


References:

  1. L. G. Bernal, On growth k-order of solutions of a complex homogeneous linear differential equations, Proc. Amer. Math. Soc. 101 (1987) 317-322.
    MathSciNet     CrossRef

  2. L. Bieberbach, Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
    MathSciNet

  3. Z. X. Chen, The growth of solutions of f '' + e-zf ' + Q(z)f = 0, where the order (Q) = 1, Sci. China Ser. A 45 (2002), 290-300.
    MathSciNet

  4. Z. X. Chen and C. C. Yang, Some further results on zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J. 22 (1999), 273-285.
    MathSciNet     CrossRef

  5. H. Fettouch and S. Hamouda, Growth of local solutions to linear differential equations around an isolated essential singularity, Electron. J. Differential Equations 2016 (2016), Paper No. 226, 10 pp.
    MathSciNet

  6. G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. Lond. Math. Soc. (2) 37 (1988), 88-104.
    MathSciNet     CrossRef

  7. G. G. Gundersen, E. M. Steinbart and S. Wang, The possible orders of solutions of linear differential equations with polynomial coefficients, Trans. Amer. Math. Soc. 350 (1998), 1225-1247.
    MathSciNet     CrossRef

  8. S. Hamouda, Properties of solutions to linear differential equations with analytic coefficients in the unit disc, Electron. J. Differential Equations 2012 (2012), No. 177, 8 pp.
    MathSciNet

  9. S. Hamouda, Iterated order of solutions of linear differential equations in the unit disc, Comput. Methods Funct. Theory 13 (2013), 545-555.
    MathSciNet     CrossRef

  10. S. Hamouda, The possible orders of growth of solutions to certain linear differential equations near a singular point, J. Math. Anal. Appl. 458 (2018) 992-1008.
    MathSciNet     CrossRef

  11. W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
    MathSciNet

  12. J. Heittokangas, R. Korhonen and J. Rätayä, Fast growing solutions of linear differential equations in the unit disc, Result. Math. 49 (2006), 265-278.
    MathSciNet     CrossRef

  13. A. Ya. Khrystiyanyn and A. A. Kondratyuk, On the Nevanlinna theory for meromorphic functions on annuli. I, Mat. Stud. 23 (2005) 19-30.
    MathSciNet

  14. L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22 (1998) 385-405.
    MathSciNet

  15. A. A. Kondratyuk and I. Laine, Meromorphic functions in multiply connected domains, in: Fourier Series Methods in Complex Analysis, Univ. Joensuu Dept. Math. Rep. Ser., vol. 10, Univ. Joensuu, Joensuu, 2006, pp. 9-111.
    MathSciNet

  16. R. Korhonen, Nevanlinna theory in an annulus, in: Value Distribution Theory and Related Topics, Adv. Complex Anal. Appl., vol. 3, Kluwer Acad. Publ., Boston, MA, 2004, pp. 167-179.
    MathSciNet     CrossRef

  17. I. Laine, Nevanlinna theory and complex differential equations, de Gruyter, Berlin, 1993.
    MathSciNet     CrossRef

  18. M. E. Lund and Y. Zhuan, Logarithmic derivatives in annulus, J. Math. Anal. Appl. 356 (2009) 441-452.
    MathSciNet     CrossRef

  19. J. Tu and C.-F. Yi, On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order, J. Math. Anal. Appl. 340 (2008) 487-497.
    MathSciNet     CrossRef

  20. G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publishing Company, New York, 1949.

  21. L. Yang, Value distribution theory, Springer-Verlag Science Press, Berlin-Beijing, 1993.
    MathSciNet


Rad HAZU Home Page