Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 99-116.
ESTIMATES OF THE LOGARITHMIC DERIVATIVE NEAR A SINGULAR POINT AND APPLICATIONS
Saada Hamouda
Laboratory of pure and applied mathematics, University of Mostaganem (UMAB), Algeria
e-mail: saada.hamouda@univ-mosta.dz
Abstract. In this paper, we will give estimates near z = 0 for the
logarithmic derivative
| f (k)(z) / f(z) |
where f is a meromorphic function in a
region of the form
D(0,R) = {z ∈ C : 0 < |z| < R}.
Some applications on the growth of solutions of linear differential equations near
a singular point are given.
2020 Mathematics Subject Classification.
34M10, 30D35.
Key words and phrases. Logarithmic derivative estimates, Nevanlinna theory, linear
differential equations, growth of solutions, singular point.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/m3v76teqny
References:
- L. G. Bernal, On growth k-order of solutions of a complex homogeneous linear differential
equations, Proc. Amer. Math. Soc. 101 (1987) 317-322.
MathSciNet
CrossRef
- L. Bieberbach, Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt,
Springer-Verlag, Berlin-Heidelberg-New York, 1965.
MathSciNet
- Z. X. Chen, The growth of solutions of
f '' + e-zf ' + Q(z)f = 0, where the order
(Q) = 1, Sci. China Ser. A 45 (2002), 290-300.
MathSciNet
- Z. X. Chen and C. C. Yang, Some further results on zeros and growths of entire
solutions of second order linear differential equations, Kodai Math. J. 22 (1999), 273-285.
MathSciNet
CrossRef
- H. Fettouch and S. Hamouda, Growth of local solutions to linear differential equations
around an isolated essential singularity, Electron. J. Differential Equations 2016
(2016), Paper No. 226, 10 pp.
MathSciNet
- G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function,
plus similar estimates, J. Lond. Math. Soc. (2) 37 (1988), 88-104.
MathSciNet
CrossRef
- G. G. Gundersen, E. M. Steinbart and S. Wang, The possible orders of solutions of linear
differential equations with polynomial coefficients, Trans. Amer. Math. Soc. 350
(1998), 1225-1247.
MathSciNet
CrossRef
- S. Hamouda, Properties of solutions to linear differential equations with analytic coefficients
in the unit disc, Electron. J. Differential Equations 2012 (2012), No. 177, 8 pp.
MathSciNet
- S. Hamouda, Iterated order of solutions of linear differential equations in the unit disc,
Comput. Methods Funct. Theory 13 (2013), 545-555.
MathSciNet
CrossRef
- S. Hamouda, The possible orders of growth of solutions to certain linear differential
equations near a singular point, J. Math. Anal. Appl. 458 (2018) 992-1008.
MathSciNet
CrossRef
- W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
MathSciNet
- J. Heittokangas, R. Korhonen and J. Rätayä, Fast growing solutions of linear differential
equations in the unit disc, Result. Math. 49 (2006), 265-278.
MathSciNet
CrossRef
- A. Ya. Khrystiyanyn and A. A. Kondratyuk, On the Nevanlinna theory for meromorphic
functions on annuli. I, Mat. Stud. 23 (2005) 19-30.
MathSciNet
- L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast
Asian Bull. Math. 22 (1998) 385-405.
MathSciNet
- A. A. Kondratyuk and I. Laine, Meromorphic functions in multiply connected domains,
in: Fourier Series Methods in Complex Analysis, Univ. Joensuu Dept. Math. Rep.
Ser., vol. 10, Univ. Joensuu, Joensuu, 2006, pp. 9-111.
MathSciNet
- R. Korhonen, Nevanlinna theory in an annulus, in: Value Distribution Theory and
Related Topics, Adv. Complex Anal. Appl., vol. 3, Kluwer Acad. Publ., Boston, MA,
2004, pp. 167-179.
MathSciNet
CrossRef
- I. Laine, Nevanlinna theory and complex differential equations, de Gruyter, Berlin,
1993.
MathSciNet
CrossRef
- M. E. Lund and Y. Zhuan, Logarithmic derivatives in annulus, J. Math. Anal. Appl.
356 (2009) 441-452.
MathSciNet
CrossRef
- J. Tu and C.-F. Yi, On the growth of solutions of a class of higher order linear differential
equations with coefficients having the same order, J. Math. Anal. Appl. 340
(2008) 487-497.
MathSciNet
CrossRef
- G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publishing
Company, New York, 1949.
- L. Yang, Value distribution theory, Springer-Verlag Science Press, Berlin-Beijing, 1993.
MathSciNet
Rad HAZU Home Page