Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 81-97.
SOME WEIGHTED TRAPEZOIDAL TYPE INEQUALITIES VIA h-PREINVEXITY
B. Meftah and K. Mekalfa
Laboratoire des télécommunications, Faculté des Sciences et de la Technologie,
University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria
e-mail: badrimeftah@yahoo.fr
Département des Mathématiques
Faculté des mathématiques, de l'informatique et des sciences de la matiére,
Université 8 mai 1945 Guelma, Algeria
e-mail: mekalfakhaoula@yahoo.com
Abstract. In this paper, a new identity is given, some weighted
trapezoidal type inequalities via h-preinvexity are established, and several
known results are derived.
2020 Mathematics Subject Classification.
26D10, 26D15, 26A51.
Key words and phrases. Hermite-Hadamard inequality, Hölder inequality,
h-preinvex functions.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/9xn31cozny
References:
- A. Barani, A. G. Ghazanfari and S. S. Dragomir, Hermite-Hadamard inequality for
functions whose derivatives absolute values are preinvex, J. Inequal. Appl. 2012,
2012:247, 9 pp.
MathSciNet
CrossRef
- W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen
in topologischen linearen Räumen (German), Publ. Inst. Math. (Beograd) (N.S.)
23(37) (1978), 13-20.
MathSciNet
- S. S. Dragomir, J. E. Pečarić, and L. E. Persson, Some inequalities of Hadamard type,
Soochow J. Math. 21 (1995), 335-341.
MathSciNet
- S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and
applications to special means of real numbers and to trapezoidal formula, Appl. Math.
Lett. 11 (1998), no. 5, 91–95.
MathSciNet
CrossRef
- J. Hua, B.-Y. Xi and F. Qi, Inequalities of Hermite-Hadamard type involving an s-convex
function with applications, Appl. Math. Comput. 246 (2014), 752-760.
MathSciNet
CrossRef
- U. S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić, Hadamard-type
inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), 26-35.
MathSciNet
CrossRef
- J.-Y. Li, On Hadamard-type inequalities for s-preinvex functions,
J. Chongqing Norm. Univ. Nat. Sci. Ed. 27 (2010), no. 4, p. 003.
- O. L. Mangasarian, Nonlinear programming, McGraw-Hill Book Co., New York-London-Sydney, 1969.
MathSciNet
CrossRef
- M. Matłoka, Inequalities for h-preinvex functions, Appl. Math. Comput. 234 (2014),
52–57.
MathSciNet
- M. Muddassar, M. I. Bhatti and M. Iqbal, Some new s-Hermite-Hadamard type inequalities
for differentiable functions and their applications, Proc. Pakistan Acad. Sci.
49 (2012), 9-17.
MathSciNet
- M. A. Noor, K. I. Noor, M. U. Awan and J. Li, On Hermite-Hadamard inequalities for
h-preinvex functions, Filomat 28 (2014), 1463-1474.
MathSciNet
CrossRef
- C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application
to special means and quadrature formulæ, Appl. Math. Lett. 13 (2000), no. 2, 51-55.
MathSciNet
CrossRef
- J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and
Statistical Applications, Academic Press, Boston, 1992.
MathSciNet
- S. Qaisar, M. Muddassar and M. Iqbal, New integral inequalities of the Hermite-Hadamard
type through invexity, Proc. Pakistan Acad. Sci. 51 (2014), 145-155.
MathSciNet
- K.-L. Tseng, G.-S. Yang and K.-C. Hsu, Some inequalities for differentiable mappings
and applications to Fejér inequality and weighted trapezoidal formula, Taiwanese J.
Math. 15 (2011), 1737-1747.
MathSciNet
CrossRef
- S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.
MathSciNet
CrossRef
- T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math.
Anal. Appl. 136 (1988), 29-38.
MathSciNet
CrossRef
Rad HAZU Home Page