Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 81-97.

SOME WEIGHTED TRAPEZOIDAL TYPE INEQUALITIES VIA h-PREINVEXITY

B. Meftah and K. Mekalfa

Laboratoire des télécommunications, Faculté des Sciences et de la Technologie, University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria
e-mail: badrimeftah@yahoo.fr

Département des Mathématiques Faculté des mathématiques, de l'informatique et des sciences de la matiére, Université 8 mai 1945 Guelma, Algeria
e-mail: mekalfakhaoula@yahoo.com


Abstract.   In this paper, a new identity is given, some weighted trapezoidal type inequalities via h-preinvexity are established, and several known results are derived.

2020 Mathematics Subject Classification.   26D10, 26D15, 26A51.

Key words and phrases.   Hermite-Hadamard inequality, Hölder inequality, h-preinvex functions.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/9xn31cozny


References:

  1. A. Barani, A. G. Ghazanfari and S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl. 2012, 2012:247, 9 pp.
    MathSciNet     CrossRef

  2. W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen (German), Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
    MathSciNet

  3. S. S. Dragomir, J. E. Pečarić, and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), 335-341.
    MathSciNet

  4. S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91–95.
    MathSciNet     CrossRef

  5. J. Hua, B.-Y. Xi and F. Qi, Inequalities of Hermite-Hadamard type involving an s-convex function with applications, Appl. Math. Comput. 246 (2014), 752-760.
    MathSciNet     CrossRef

  6. U. S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), 26-35.
    MathSciNet     CrossRef

  7. J.-Y. Li, On Hadamard-type inequalities for s-preinvex functions, J. Chongqing Norm. Univ. Nat. Sci. Ed. 27 (2010), no. 4, p. 003.

  8. O. L. Mangasarian, Nonlinear programming, McGraw-Hill Book Co., New York-London-Sydney, 1969.
    MathSciNet     CrossRef

  9. M. Matłoka, Inequalities for h-preinvex functions, Appl. Math. Comput. 234 (2014), 52–57.
    MathSciNet

  10. M. Muddassar, M. I. Bhatti and M. Iqbal, Some new s-Hermite-Hadamard type inequalities for differentiable functions and their applications, Proc. Pakistan Acad. Sci. 49 (2012), 9-17.
    MathSciNet

  11. M. A. Noor, K. I. Noor, M. U. Awan and J. Li, On Hermite-Hadamard inequalities for h-preinvex functions, Filomat 28 (2014), 1463-1474.
    MathSciNet     CrossRef

  12. C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulæ, Appl. Math. Lett. 13 (2000), no. 2, 51-55.
    MathSciNet     CrossRef

  13. J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Boston, 1992.
    MathSciNet

  14. S. Qaisar, M. Muddassar and M. Iqbal, New integral inequalities of the Hermite-Hadamard type through invexity, Proc. Pakistan Acad. Sci. 51 (2014), 145-155.
    MathSciNet

  15. K.-L. Tseng, G.-S. Yang and K.-C. Hsu, Some inequalities for differentiable mappings and applications to Fejér inequality and weighted trapezoidal formula, Taiwanese J. Math. 15 (2011), 1737-1747.
    MathSciNet     CrossRef

  16. S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.
    MathSciNet     CrossRef

  17. T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1988), 29-38.
    MathSciNet     CrossRef


Rad HAZU Home Page