Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 59-80.
COMBINATORIAL EXTENSIONS OF POPOVICIU'S
INEQUALITY VIA ABEL-GONTSCHAROFF POLYNOMIAL WITH APPLICATIONS IN INFORMATION THEORY
Saad Ihsan Butt, Tahir Rasheed, Đilda Pečarić and Josip Pečarić
Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan
e-mail: saadihsanbutt@gmail.com
e-mail: tahirtishna24@gmail.com
Catholic University of Croatia, Ilica 242, Zagreb, Croatia
e-mail: gildapeca@gmail.com
RUDN University, Miklukho-Maklaya str.6, 117198 Moscow, Russia
e-mail: pecaric@element.hr
Abstract. We establish new refinements and improvements of
Popoviciu's inequality for n-convex functions using Abel-Gontscharoff interpolating
polynomial along with the aid of new Green functions. We
construct new inequalities for n-convex functions and compute new upper
bounds for Ostrowski and Grüss type inequalities. As an application of our
work in information theory, we give new estimations for Shannon, Relative
and Zipf-Mandelbrot entropies using generalized Popoviciu's inequality.
2020 Mathematics Subject Classification.
26A51, 26D15, 26E60, 94A17, 94A15.
Key words and phrases. Popoviciu's inequality, n-convex function, new Green functions,
Grüss and Ostrowski inequality, divergence functional, Shannon Entropy,
Kullback-Liebler distance.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/mzvkptqwg9
References:
- R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and
their Applications, Kluwer Academic Publishers, Dordrecht, 1993.
MathSciNet
CrossRef
- M. Bencze, C. P. Niculescu and F. Popovici, Popoviciu' s inequality for functions of
several variables, J. Math. Anal. Appl. 365 (2010), 399-409.
MathSciNet
CrossRef
- S. I. Butt, K. A. Khan and J. Pečarić, Popoviciu type inequalities via Green function
and generalized Montgomery identity, Math. Inequal. Appl. 18 (2015), 1519-1538.
MathSciNet
CrossRef
- S. I. Butt, K. A. Khan and J. Pečarić,
Popoviciu type inequalities via Green function and Taylor polynomial,
Turkish J. Math. 40 (2016),
333-349.
MathSciNet
CrossRef
- S. I. Butt, J. Pečarić and A. Vukelić, Generalization of Popoviciu-type inequalities via
Fink's identity, Mediterr. J. Math. 13 (2016), 1495-1511.
MathSciNet
CrossRef
- P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Čebyšev functional
and applications, J. Math. Inequal. 8 (2014), 159-170.
MathSciNet
CrossRef
- A. Chao, L. Jost, T. C. Hsieh, K. H. Ma, W. B. Sherwin and L. A. Rollins, Expected
Shannon entropy and Shannon differentiation between subpopulations for neutral genes
under the finite island model, PLOS ONE 10(6) (2015), 1-24.
CrossRef
- V. Diodato, Dictionary of Bibliometrics, Haworth Press, New York, 1994.
- L. Egghe and R. Rousseau, Introduction to Informetrics, Quantitative Methods in
Library, Documentation and Information Science, Elsevier Science Publishers, New
York, 1990.
- L. Horváth, Đ. Pečarić and J. Pečarić,
Estimations of f- and Rényi divergences by
using a cyclic refinement of the Jensen's inequality, Bull. Malays. Math. Sci. Soc. 42
(2019), 933-946.
MathSciNet
CrossRef
- J. Jakšetić, Đ. Pečarić and J. Pečarić,
Some properties of Zipf-Mandelbrot law and
Hurwitz ζ-function, Math. Inequal. Appl. 21 (2018), 575-584.
MathSciNet
CrossRef
- J. Jakšetić and J. Pečarić, Exponential convexity method,
J. Convex. Anal. 20 (2013), 181-197.
MathSciNet
- M. A. Khan, Đ. Pečarić and J. Pečarić, Bounds for Shannon and Zipf-Mandelbrot
entropies, Math. Methods Appl. Sci. 40 (2017), 7316-7322.
MathSciNet
CrossRef
- M. A. Khan, Đ. Pečarić and J. Pečarić, On Zipf-Mandelbrot entropy,
J. Comput. Appl. Math. 346 (2019) 192-204.
MathSciNet
CrossRef
- S. Kullback, Information Theory and Statistics, J. Wiley, New York, 1959.
MathSciNet
- A. Lesne, Shannon entropy: a rigorous notion at the crossroads between probability,
information theory, dynamical systems and statistical physics, Math. Structures Comput.
Sci. 24 (2014), no. 3, e240311, 63 pp.
MathSciNet
CrossRef
- D. Manin, Mandelbrot's model for Zipf's Law: Can Mandelbrot's model explain Zipf's law for language,
Journal of Quantitative Linguistics 16(3) (2009), 274-285.
CrossRef
- N. Mehmood, R. P. Agarwal, S. I. Butt and J. Pečarić, New generalizations of
Popoviciu-type inequalities via new Green's functions and Montgomery identity, J.
Inequal. Appl. 2017 (2017), Paper No. 108.
MathSciNet
CrossRef
- M. V. Mihai and F. C. Mitroi-Symeonidis, New extensions of Popoviciu's inequality,
Mediterr. J. Math. 13 (2016) 3121-3133.
MathSciNet
CrossRef
- M. A. Montemurro, Beyond the Zipf-Mandelbrot law in quantitative linguistics, Physica
A: Statistical Mechanics and its Applications 300(3–4) (2001), 567-578.
CrossRef
- C. P. Niculescu, The Integral version of Popoviciu's inequality, J. Math. Inequal. 3
(2009), 323-328.
MathSciNet
CrossRef
- C. P. Niculescu and F. Popovici, A refinement of Popoviciu's inequality,
Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 49 (2006), 285-290.
MathSciNet
- J. Pečarić and J. Perić, Improvement of the Giaccardi and the Petrović inequality and
related Stolarsky type means, An. Univ. Craiova Ser. Mat. Inform. 39 (2012), 65-75.
MathSciNet
- J. Pečarić, M. Praljak and A. Witkowski, Linear operator inequality for n-convex
functions at a point, Math. Inequal. Appl. 18 (2015), 1201-1217.
MathSciNet
CrossRef
- J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and
Statistical Applications, Academic Press, Boston, 1992.
MathSciNet
- S. T. Piantadosi, Zipf's word frequency law in natural language: A critical review and
future directions, Psychonomic Bulletin and Review 21(5) (2014), 1112-1130.
CrossRef
- T. Popoviciu, Sur certaines inégalités qui caractérisent les fonctions convexes,
An. Sti. Univ. "Al. I. Cuza" Iasi, Sect. I a Mat. (N.S.) 11B (1965), 155-164.
MathSciNet
Rad HAZU Home Page