Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 49-58.

SOME PROPERTIES OF THE EXTENDED ZERO-DIVISOR GRAPH OF THE RING OF GAUSSIAN INTEGERS MODULO n

Basem Alkhamaiseh

Department of Mathematics, Yarmouk university, Irbid, Jordan
e-mail: basem.m@yu.edu.jo


Abstract.   Recently, Bennis and others studied an extension of the zero-divisor graph of a commutative ring R. They called this extension the extended zero-divisor graph of R, denoted by Γ(R). The graph Γ(R) has as set of vertices all the nonzero zero-divisors of R, Z(R)*, and two distinct vertices x and y are adjacent if there are nonnegative integers n and m such that xnym = 0 with xn ≠ 0 and ym ≠ 0. In this paper, we study several properties of the extended zero-divisor graph of the ring of Gaussian integers modulo n (Γ(Zn[i])). We characterize the positive integers n such that Γ(Zn[i]) = Γ(Zn[i]). The diameter and girth, as well as the positive integers n such that Γ(Zn[i]) is planar or outerplanar, are also determined.

2020 Mathematics Subject Classification.   13A99, 13B99, 05C25.

Key words and phrases.   Ring of Gaussian integers modulo n, extended zero-divisor graph, diameter and girth, planar graph.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/9e31lhvggm


References:

  1. E. Abu Osba, S. Al-Addasi and B. Al-Khamaiseh, Some properties of the zero-divisor graph for the ring of Gaussian integers modulo n, Glasg. Math. J. 53 (2011), 391-399.
    MathSciNet     CrossRef

  2. E. Abu Osba, S. Al-Addasi and N. Jaradeh, Zero divisor graph for the ring of Gaussian integers modulo n, Comm. Algebra 36 (2008), 3865-3877.
    MathSciNet     CrossRef

  3. D. F. Anderson, On the diameter and girth of a zero divisor graph II, Houston J. Math. 34 (2008), 361-371.
    MathSciNet

  4. D. F. Anderson, M. C. Axtel, and J. A. Stickles, Zero-divisor graphs in commutative rings, in: Commutative Algebra - Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York, 2011, pp. 23-45.
    MathSciNet     CrossRef

  5. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 3073-3093.
    MathSciNet     CrossRef

  6. D. F. Anderson and G. McClurkin, Generalizations of the zero-divisor graph, Int. Electron. J. Algebra 27 (2020), 237-262.
    MathSciNet     CrossRef

  7. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
    MathSciNet     CrossRef

  8. D. Bennis, J. Mikram and F. Taraza, On the extended zero divisor graph of commutative rings, Turkish J. Math. 40 (2016), 376-388.
    MathSciNet     CrossRef

  9. G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 433-438.
    MathSciNet

  10. H.-J. Chiang-Hsieh, N. O. Smith and H.-J. Wang, Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (2010), 1-31.
    MathSciNet

  11. G. Dresden and W. M. Dymàček, Finding factors of factor rings over the Gaussian integers, Amer. Math. Monthly 112 (2005), 602-611.
    MathSciNet     CrossRef

  12. R. Diestel, Graph Theory, 4th edn., Springer-Verlag, Heidelberg, 2010.
    MathSciNet     CrossRef

  13. F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969.
    MathSciNet

  14. J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.
    MathSciNet

  15. C. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), 271-283.


Rad HAZU Home Page