Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 49-58.
SOME PROPERTIES OF THE EXTENDED ZERO-DIVISOR
GRAPH OF THE RING OF GAUSSIAN INTEGERS MODULO n
Basem Alkhamaiseh
Department of Mathematics, Yarmouk university, Irbid, Jordan
e-mail: basem.m@yu.edu.jo
Abstract. Recently, Bennis and others studied an extension of the
zero-divisor graph of a commutative ring R. They called this extension
the extended zero-divisor graph of R, denoted by Γ(R).
The graph Γ(R)
has as set of vertices all the nonzero zero-divisors of R, Z(R)*, and two
distinct vertices x and y are adjacent if there are nonnegative integers n
and m such that xnym = 0 with
xn ≠ 0 and ym ≠ 0. In this paper,
we study several properties of the extended zero-divisor graph of the ring
of Gaussian integers modulo n
(Γ(Zn[i])).
We characterize the positive
integers n such that
Γ(Zn[i]) =
Γ(Zn[i]).
The diameter and girth, as well
as the positive integers n such that
Γ(Zn[i])
is planar or outerplanar, are
also determined.
2020 Mathematics Subject Classification.
13A99, 13B99, 05C25.
Key words and phrases. Ring of Gaussian integers modulo n,
extended zero-divisor graph, diameter and girth, planar graph.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/9e31lhvggm
References:
- E. Abu Osba, S. Al-Addasi and B. Al-Khamaiseh, Some properties of the zero-divisor
graph for the ring of Gaussian integers modulo n, Glasg. Math. J. 53 (2011), 391-399.
MathSciNet
CrossRef
- E. Abu Osba, S. Al-Addasi and N. Jaradeh, Zero divisor graph for the ring of Gaussian
integers modulo n, Comm. Algebra 36 (2008), 3865-3877.
MathSciNet
CrossRef
- D. F. Anderson, On the diameter and girth of a zero divisor graph II, Houston J.
Math. 34 (2008), 361-371.
MathSciNet
- D. F. Anderson, M. C. Axtel, and J. A. Stickles, Zero-divisor graphs in commutative
rings, in: Commutative Algebra - Noetherian and Non-Noetherian Perspectives (M.
Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York,
2011, pp. 23-45.
MathSciNet
CrossRef
- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring,
J. Algebra 217 (1999), 3073-3093.
MathSciNet
CrossRef
- D. F. Anderson and G. McClurkin, Generalizations of the zero-divisor graph, Int. Electron.
J. Algebra 27 (2020), 237-262.
MathSciNet
CrossRef
- I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
MathSciNet
CrossRef
- D. Bennis, J. Mikram and F. Taraza, On the extended zero divisor graph of commutative
rings, Turkish J. Math. 40 (2016), 376-388.
MathSciNet
CrossRef
- G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. H. Poincaré
Sect. B (N.S.) 3 (1967), 433-438.
MathSciNet
- H.-J. Chiang-Hsieh, N. O. Smith and H.-J. Wang, Commutative rings with toroidal zero-divisor
graphs, Houston J. Math. 36 (2010), 1-31.
MathSciNet
- G. Dresden and W. M. Dymàček, Finding factors of factor rings over the Gaussian integers,
Amer. Math. Monthly 112 (2005), 602-611.
MathSciNet
CrossRef
- R. Diestel, Graph Theory, 4th edn., Springer-Verlag, Heidelberg, 2010.
MathSciNet
CrossRef
- F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969.
MathSciNet
- J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York,
1988.
MathSciNet
- C. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15
(1930), 271-283.
Rad HAZU Home Page