Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 39-48.

SQUARE-FULL PRIMITIVE ROOTS IN SHORT INTERVALS

Pinthira Tangsupphathawat, Teerapat Srichan and Vichian Laohakosol

Department of Mathematics, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok 10220, Thailand
e-mail: t.pinthira@hotmail.com

Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
e-mail: fscitrp@ku.ac.th
e-mail: fscivil@ku.ac.th


Abstract.   Using the character sum method of Shapiro and the work of Liu based on the exponent pair technique, an asymptotic formula for the number of square-full primitive roots modulo a prime in short intervals is obtained.

2020 Mathematics Subject Classification.   11L70, 11N69.

Key words and phrases.   Primitive roots, square-full integers, short intervals.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/90836c7nxy


References:

  1. P. T. Bateman and E. Grosswald, On a theorem of Erdős and Szekeres, Illinois J. Math. 2 (1958), 88-98.
    MathSciNet

  2. D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 (1962), 179-192.
    MathSciNet     CrossRef

  3. Y. Cai, On the distribution of square-full integers, Acta Math. Sinica (N.S.) 13 (1997), 269-280.
    MathSciNet     CrossRef

  4. X.-D. Cao, The distribution of square-full integers, Period. Math. Hungar. 28 (1994), 43-54.
    MathSciNet     CrossRef

  5. X. Cao, On the distribution of square-full integers, Period. Math. Hungar. 34 (1997), 169-175.
    MathSciNet     CrossRef

  6. P. Erdős and S. Szekeres, Über die anzahl der abelschen gruppen gegebener ordnung und über ein verwandtes zahlentheoretisches problem, Acta Univ. Szeged. 7 (1934-1935), 95-102.

  7. A. Ivić, The Riemann Zeta-Function. The Theory of the Riemann Zeta-Function with Applications, Wiley, New York, 1985.
    MathSciNet

  8. H. Q. Liu, The number of squarefull numbers in an interval, Acta. Arith. 64 (1993), 129-149.
    MathSciNet     CrossRef

  9. H. Q. Liu, The distribution of square-full integers, Ark. Mat. 32 (1994), 449-454.
    MathSciNet     CrossRef

  10. H. Liu and W. Zhang, On the squarefree and squarefull numbers, J. Math. Kyoto Univ. 45 (2005), 247-255.
    MathSciNet     CrossRef

  11. M. Munsch and T. Trudgian, Square-full primitive roots, Int. J. Number Theory 14 (2018), 1013-1021.
    MathSciNet     CrossRef

  12. H. N. Shapiro, Introduction to the Theory of Numbers. Wiley, New York, 1983.
    MathSciNet

  13. D. Suryanarayana and R. Sitamachandra Rao, The distribution of square-full integers, Ark. Mat. 11 (1973), 195-201.
    MathSciNet     CrossRef

  14. T. Srichan, Square-full and cube-full numbers in arithmetic progressions, Šiauliai Math. Seminar 8 (2013), 223-248.
    MathSciNet

  15. T. Srichan, On the distribution of square-full and cube-full primitive roots, Period. Math. Hungar. 80 (2020), 103-107.
    MathSciNet     CrossRef

  16. J. Wu, On the distribution of square-full integers, Arch. Math. (Basel) 77 (2001), 233-240.
    MathSciNet     CrossRef

  17. J. Wu, On the distribution of square-full and cube-full integers, Monatsh. Math. 126 (1998), 353-367.
    MathSciNet     CrossRef

  18. W. Zhai and H. Liu, On square-free primitive roots mod p, Sci. Magna 2 (2006), 15-19.
    MathSciNet


Rad HAZU Home Page