Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 29-37.
RANK ZERO ELLIPTIC CURVES INDUCED BY RATIONAL DIOPHANTINE TRIPLES
Andrej Dujella and Miljen Mikić
Department of Mathematics, Faculty of Science, University of Zagreb,
Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: duje@math.hr
Kumičićeva 20, 51000 Rijeka, Croatia
e-mail: miljen.mikic@gmail.com
Abstract. Rational Diophantine triples, i.e. rationals a, b, c with the
property that ab + 1, ac + 1, bc + 1 are perfect squares, are often used in
the construction of elliptic curves with high rank. In this paper, we consider
the opposite problem and ask how small can be the rank of elliptic
curves induced by rational Diophantine triples. It is easy to find rational
Diophantine triples with elements with mixed signs which induce elliptic
curves with rank 0. However, the problem of finding such examples of rational
Diophantine triples with positive elements is much more challenging,
and we will provide the first such known example.
2020 Mathematics Subject Classification.
11G05, 11D09.
Key words and phrases. Elliptic curves, Diophantine triples, rank, torsion group.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/m8vqrtq4j9
References:
- J. Aguirre, A. Dujella and J. C. Peral, On the rank of elliptic curves coming from
rational Diophantine triples, Rocky Mountain J. Math. 42 (2012), 1759-1776.
MathSciNet
CrossRef
- A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and
8x2 - 7 = z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
MathSciNet
CrossRef
- W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I. The user language,
J. Symb. Comp. 24 (1997), 235-265.
MathSciNet
CrossRef
- G. Campbell and E. H. Goins, Heron triangles, Diophantine problems and elliptic curves, preprint,
http://www.swarthmore.edu/NatSci/gcampbe1/papers/heron-Campbell-Goins.pdf
- I. Connell, Elliptic Curve Handbook, McGill University, 1999.
- J. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press,
Cambridge, 1997.
MathSciNet
- A. Dujella, Diophantine triples and construction of high-rank elliptic curves over Q
with three non-trivial 2-torsion points, Rocky Mountain J. Math. 30 (2000), 157-164.
MathSciNet
CrossRef
- A. Dujella, Diophantine m-tuples and elliptic curves, J. Théor. Nombres Bordeaux 13
(2001), 111-124.
MathSciNet
- A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew.
Math. 566 (2004), 183-214.
MathSciNet
CrossRef
- A. Dujella, On Mordell-Weil groups of elliptic curves induced by Diophantine triples,
Glas. Mat. Ser. III 42 (2007), 3-18.
MathSciNet
CrossRef
- A. Dujella, What is ... a Diophantine m-tuple?, Notices Amer. Math. Soc. 63 (2016),
772-774.
MathSciNet
CrossRef
- A. Dujella, M. Jukić Bokun and I. Soldo, On the torsion group of elliptic curves
induced by Diophantine triples over quadratic fields, Rev. R. Acad. Cienc. Exactas
Fis. Nat. Ser. A Math. RACSAM 111 (2017), 1177-1185.
MathSciNet
CrossRef
- A. Dujella and M. Kazalicki, More on Diophantine sextuples, in: Number Theory -
Diophantine problems, uniform distribution and applications, Festschrift in honour
of Robert F. Tichy’s 60th birthday (C. Elsholtz, P. Grabner, Eds.), Springer, Cham, 2017, pp. 227-235.
MathSciNet
- A. Dujella, M. Kazalicki, M. Mikić and M. Szikszai, There are infinitely many rational
Diophantine sextuples, Int. Math. Res. Not. IMRN 2017 (2) (2017), 490-508.
MathSciNet
CrossRef
- A. Dujella, M. Kazalicki and V. Petričević, There are infinitely many rational Diophantine
sextuples with square denominators, J. Number Theory 205 (2019), 340-346.
MathSciNet
CrossRef
- A. Dujella, M. Kazalicki and V. Petričević, Rational Diophantine sextuples containing
two regular quadruples and one regular quintuple, Acta Mathematica Spalatensia, to appear.
- A. Dujella and M. Mikić, On the torsion group of elliptic curves induced by
D(4)-triples, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 22 (2014), 79-90.
MathSciNet
CrossRef
- A. Dujella and J. C. Peral, High rank elliptic curves with torsion
Z/2Z × Z/4Z induced by Diophantine triples,
LMS J. Comput. Math. 17 (2014), 282-288.
MathSciNet
CrossRef
- A. Dujella and J. C. Peral, Elliptic curves induced by Diophantine triples, Rev. R.
Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 113 (2019), 791-806.
MathSciNet
CrossRef
- A. Dujella and J. C. Peral, Construction of high rank elliptic curves, J. Geom. Anal.
(2020), https://doi.org/10.1007/s12220-020-00373-7
CrossRef
- A. Dujella and J. C. Peral, High rank elliptic curves induced by rational Diophantine
triples, Glas. Mat. Ser. III, to appear.
- T. Fisher, Higher descents on an elliptic curve with a rational 2-torsion point, Math.
Comp. 86 (2017), 2493-2518.
MathSciNet
CrossRef
- P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41 (2006), 195-203.
MathSciNet
CrossRef
- B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer.
Math. Soc. 371 (2019), 6665-6709.
MathSciNet
CrossRef
- B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162.
MathSciNet
CrossRef
- T. Skolem, Diophantische Gleichungen, Chelsea, 1950.
Rad HAZU Home Page