Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 15-27.

ON TRIANGLES WITH COORDINATES OF VERTICES FROM THE TERMS OF THE SEQUENCES {Ukn} AND {Vkn}

Neşe Ömür, Gökhan Soydan, Yücel Türker Ulutaş and Yusuf Doğru

Department of Mathematics, Kocaeli University, 41380 Izmit-Kocaeli, Turkey
e-mail: neseomur@kocaeli.edu.tr

Department of Mathematics, Bursa Uludag University, 16059 Bursa, Turkey
e-mail: gsoydan@uludag.edu.tr

Department of Mathematics, Kocaeli University, 41380 Izmit-Kocaeli, Turkey
e-mail: turkery@kocaeli.edu.tr

Hava Eğitim Komutanlığı, Konak-Izmir, Turkey
e-mail: yusufdogru1@yahoo.com


Abstract.   In this paper, we determine some results of the triangles with coordinates of vertices involving the terms of the sequences {Ukn} and {Vkn} where Ukn are terms of a second order recurrent sequence and Vkn are terms in the companion sequence for odd positive integer k, generalizing works of Čerin. For example, the cotangent of the Brocard angle of the triangle Δkn is cot(ΩΔkn = (Uk(2n+3)V2k - Vk(2n+3)Uk) / ((-1)nU2k).

2020 Mathematics Subject Classification.   11B37, 11Y55, 05A19.

Key words and phrases.   Second order sequence, triangle, orthologic, paralogic, homologic.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/ydkx2cwq49


References:

  1. B. Çelik, Maple ve Maple ile Matematik, Dora Yayın Dagıtım, Bursa, 2014.

  2. Z. Čerin, On triangles with Fibonacci and Lucas numbers as coordinates, Sarajevo J. Math. 3 (2007), 3-7.
    MathSciNet

  3. Z. Čerin and G. M. Gianella, Triangles with coordinates of vertices from Pell and Pell-Lucas numbers, Rend. Circ. Mat. Palermo (2) Suppl. 80 (2008), 65-73.
    MathSciNet

  4. Z. Čerin, Hyperbolas, orthology, and antipedal triangles, Glasnik Mat. Ser. III 33 (1998), 143-160.
    MathSciNet

  5. Z. Čerin, On propellers from triangles, Beitr. Algebra Geom. 42 (2001), 575-582.
    MathSciNet

  6. W. Gallatly, The modern geometry of the triangle, Second Edition, Hodgson, London, 1913.

  7. R. Honsberger, Episodes in nineteenth and twentieth century Euclidean geometry, New Mathematical Library, The Mathematical Association of America, 1995.
    MathSciNet

  8. R. A. Johnson, Advanced Euclidean geometry, Dover Publications, 1960.
    MathSciNet

  9. E. Kılıç and P. Stănica, Factorizations and representations of second order linear recurrences with indices in arithmetic progressions, Bol. Soc. Mat. Mex. (3) 15 (2009), 23-35.
    MathSciNet

  10. E. Kılıç, Y. Türker Ulutas and N. Ömür, Sums of products of the terms of the generalized Lucas sequence {Vkn}, Hacettepe J. Math. Stat. 4 (2011), 147-161.
    MathSciNet

  11. N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://www2.research.att.com/~njas/sequences/.


Rad HAZU Home Page