Rad HAZU, Matematičke znanosti, Vol. 24 (2020), 1-14.

LAPLACIAN COEFFICIENTS OF TREES

Ali Ghalavand and Ali Reza Ashrafi

Department of Pure Mathematics, Faculty of Mathematical Sciences University of Kashan, Kashan 87317-53153, I. R. Iran
e-mail: alighalavand@grad.kashanu.ac.ir
e-mail: ashrafi@kashanu.ac.ir


Abstract.   Let G be a simple and undirected graph with Laplacian polynomial ψ(G, λ) = Σk=0n (-1)n-kck(Gk. In this paper, exact formulas for the coefficient cn-4 and the number of 4-matchings with respect to the Zagreb indices of a given tree are presented. The chemical trees with first through the fifteenth greatest cn-4-values are also determined.

2020 Mathematics Subject Classification.   05C31, 05C05.

Key words and phrases.   Laplacian coefficient, matching, Zagreb index, tree.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/m16wjcev89


References:

  1. A. R. Ashrafi, M. Eliasi and A. Ghalavand, Laplacian coefficients and Zagreb indices of trees, Linear Multilinear Algebra 67 (2019), 1736-1749.
    MathSciNet     CrossRef

  2. A. Behmaram, On the number of 4-matchings in graphs, MATCH Commun. Math. Comput. Chem. 62 (2009), 381-388.
    MathSciNet

  3. D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application, Barth, Heidelberg, 1995.
    MathSciNet

  4. M. Eliasi and A. Ghalavand, Trees with the minimal second Zagreb index, Kragujevac J. Math. 42 (2018), 325-333.
    MathSciNet     CrossRef

  5. E. J. Farrell, J. M. Guo and G. M. Constantine, On matching coefficients, Discrete Math. 89 (1991), 203-210.
    MathSciNet     CrossRef

  6. B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184-1190.
    MathSciNet     CrossRef

  7. A. Ghalavand, M. Eliasi and A. R. Ashrafi, Relations between Wiener, hyper-Wiener and some Zagreb type indices, Kragujevac J. Sci. 41 (2019), 37-42.
    CrossRef

  8. I. Gutman, A. Ghalavand, T. Dehghan-Zadeh and A. R. Ashrafi, Graphs with smallest forgotten index, Iranian J. Math. Chem. 8 (2017), 259-273.
    CrossRef

  9. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
    CrossRef

  10. I. Gutman and K. Ch. Das, The first Zagreb indices 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
    MathSciNet

  11. A. Ilić, Trees with minimal Laplacian coefficients, Comput. Math. Appl. 59 (2010), 2776-2783.
    MathSciNet     CrossRef

  12. A. Miličević, S. Nikolić and N. Trinajstić, On reformulated Zagreb indices, Mol. Divers. 8 (2004), 393-399.
    CrossRef

  13. C. S. Oliveira, N. M. M. de Abreu and S. Jurkewicz, The characteristic polynomial of the Laplacian of graphs in (a, b)-linear classes, Linear Algebra Appl. 356 (2002) 113-121.
    MathSciNet     CrossRef

  14. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
    CrossRef

  15. W. Yan and Y.-N. Yeh, Connections between Wiener index and matchings, J. Math. Chem. 39 (2006) 389-399.
    MathSciNet     CrossRef

  16. S. Zhang and H. Zhang, Unicyclic graphs with the first three smallest and largest first general Zagreb index, MATCH Commun. Math. Comput. Chem. 55 (2006), 427-438.
    MathSciNet


Rad HAZU Home Page