Rad HAZU, Matematičke znanosti, Vol. 23 (2019), 141-157.

OPTIMIZATION OF DAMPING POSITIONS IN A MECHANICAL SYSTEM

Yoshihiro Kanno, Matea Puvača, Zoran Tomljanović and Ninoslav Truhar

Mathematics and Informatics Center, The University of Tokyo, Tokyo 113-8656, Japan
e-mail: kanno@mi.u-tokyo.ac.jp

Department of Mathematics, Josip Juraj Strossmayer University of Osijek, Trg Ljudevita Gaja 6, 31 000 Osijek, Croatia
e-mail: mpuvaca@mathos.hr
e-mail: ztomljan@mathos.hr
e-mail: ntruhar@mathos.hr


Abstract.   This paper deals with damping optimization of the mechanical system based on the minimization of the so-called "average displacement amplitude". Further, we propose three different approaches to solving this minimization problems, and present their performance on two examples.

2010 Mathematics Subject Classification.   65K10, 49M99, 90C11.

Key words and phrases.   Optimal damper placement, damped mechanical system, average displacement amplitude.


Full text (PDF) (free access)

DOI: https://doi.org/10.21857/y26kec33q9


References:

  1. T. Achterberg, SCIP: solving constraint integer programs, Math. Program. Comput. 1 (2009), 1-41.
    MathSciNet     CrossRef

  2. M. F. Anjos and J. B. Lasserre (eds.), Handbook on Semidefinite, Conic and Polynomial Optimization, Springer, New York, 2012.
    MathSciNet     CrossRef

  3. A. Atamtürk and V. Narayanan, Conic mixed-integer rounding cuts, Math. Program. 122 (2010), 1-20.
    MathSciNet     CrossRef

  4. B. P. Belinskiy and J. P. Dauer and C. Martin and M. A. Shubov, On controllability of an elastic string with a viscous damping, Numer. Funct. Anal. Optim. 19 (1998), 227-255.
    MathSciNet     CrossRef

  5. P. Benner and Z. Tomljanović and N. Truhar, Damping optimization for linear vibrating systems using dimension reduction, in: The 10th International Conference on Vibration Problems ICOVP, Prague, 2011, pp. 297-305.

  6. P. Benner and Z. Tomljanović and N. Truhar, Dimension reduction for damping optimization in linear vibrating systems, ZAMM Z. Angew. Math. Mech. 91 (2011), 179-191.
    MathSciNet     CrossRef

  7. P. Benner and Z. Tomljanović and N. Truhar, Optimal damping of selected eigenfrequencies using dimension reduction, Numer. Linear Algebra Appl. 20 (2013), 1-17.
    MathSciNet     CrossRef

  8. D. E. Beskos, The effect of damping on the vibrational stability relation of linear systems, Mech. Res. Comm. 3 (1976), 373-377.
    CrossRef

  9. D. E. Beskos and B. A. Boley, Critical damping in linear discrete dynamic systems, ASME J. Appl. Mech. 47 (1980), 627-630.
    CrossRef

  10. A. Billionnet and S. Elloumi and A. Lambert, Extending the QCR method to general mixed-integer programs, Math. Program. 131 (2012), 381-401.
    MathSciNet     CrossRef

  11. J. T. Cremer Jr., Advances in Imaging and Electron Physics, Volume 173, Elsevier, 2010.

  12. F. E. Curtis and T. Mitchell and M. L. Overton, A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles, Optim. Methods Softw. 32 (2017), 148-181.
    MathSciNet     CrossRef

  13. S. Drewes and S. Pokutt, Cutting-planes for weakly-coupled 0/1 second order cone programs, Electron. Notes Discrete Math. 36 (2010), 735-742.
    CrossRef

  14. M. I. Friswell and A. W. Lees, Resonance frequencies of viscously damped structures, J. Sound and Vibration 217 (1998), 950-959.
    CrossRef

  15. Gurobi Optimization Inc., Gurobi Optimizer Reference Manual, http://www.gurobi.com/

  16. N. Hori and Y. Inoue and N. Inoue, A study on energy dissipating behaviors and response prediction of rc structures with viscous dampers subjected to earthquakes, in: 13th World Conference on Earthquake Engineering, Vancouver, 2004.

  17. IBM ILOG, User’s Manual for CPLEX, http://www.ilog.com/

  18. D. J. Inman and A. N. Andry, Jr., Some results on the nature of eigenvalues of discrete damped linear systems, ASME J. Appl. Mech. 47 (1980), 927-930.
    CrossRef

  19. Y. Kanno, Damper placement optimization in a shear building model with discrete design variables: a mixed-integer second-order cone programming approach, Earthquake Engineering and Structural Dynamics 42 (2013), 1657-1676.
    CrossRef

  20. Y. Kanno, Global optimization of trusses with constraints on number of different crosssections: a mixed-integer second-order cone programming approach, Comput. Optim. Appl. 63 (2016), 203-236.
    MathSciNet     CrossRef

  21. Y. Kanno, Mixed-integer second-order cone programming for global optimization of compliance of frame structure with discrete design variables, Struct. Multidiscip. Optim. 54 (2016), 301-316.
    MathSciNet     CrossRef

  22. I. Kuzmanović and Z. Tomljanović and N. Truhar, Optimization of material with modal damping, Appl. Math. Comput. 218 (2012), 7326-7338.
    MathSciNet     CrossRef

  23. I. Kuzmanović and Z. Tomljanović and N. Truhar, Damping optimization over the arbitrary time of the excited mechanical system, J. Comput. Appl. Math. 304 (2016), 120-129.
    MathSciNet     CrossRef

  24. J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7 (1965), 308-313.
    MathSciNet     CrossRef

  25. B. Nour-Omid and M. E. Regelbrugge, Lanczos method for dynamic analysis of damped structural systems, Earthquake Engineering and Structural Dynamics 18 (1989), 1091-1104.
    CrossRef

  26. U. Prells and M. I. Friswell, A measure of non-proportional damping, Mech. Systems Signal Processing 14(2) (2000), 125-137.
    CrossRef

  27. S. E. Schaffer, The Effect of a Gap Nonlinearity on Recursive Parameter Identification Algorithms, Massachusetts Institute of Technology, 1988.

  28. W. Seto, Schaum’s Outline of Theory and Problems of Mechanical Vibrations. McGraw-Hill, 1964.

  29. I. Takewaki, Optimal damper placement for minimum transfer functions, Earthquake Engineering and Structural Dynamics 26 (1997), 1113-1124.
    CrossRef

  30. I. Takewaki, Optimal damper placement for planar building frames using transfer functions, Structural and Multidisciplinary Optimization 20 (2000), 280-287.
    CrossRef

  31. I. Takewaki and S. Yoshitomi, Effects of support stiffnesses on optimal damper placement for a planar building frame, The Structural Design of Tall Buildings 7 (1998), 323-336.
    CrossRef

  32. Z. Tomljanović, Optimal damping for vibrating systems using dimension reduction. PhD thesis, Faculty of Science, University of Zagreb, Zagreb, 2011.

  33. N. Truhar and Z. Tomljanović, Estimation of optimal damping for mechanical vibrating systems, Int. J. Appl. Math. Mech. 5 (2009), 14-26.

  34. N. Truhar and Z. Tomljanović and K. Veselić, Damping optimization in mechanical systems with external force, Appl. Math. Comput. 250 (2015), 270-279.
    MathSciNet     CrossRef

  35. N. Truhar and K. Veselić, An efficient method for estimating the optimal dampers’ viscosity for linear vibrating systems using Lyapunov equation, SIAM J. Matrix Anal. Appl. 31 (2009), 18-39.
    MathSciNet     CrossRef

  36. K. Veselić, Damped Oscillations of Linear Systems, Lecture Notes in Mathematics 2023, Springer-Verlag, Berlin, 2011.
    MathSciNet     CrossRef

  37. J. P. Vielma and S. Ahmed and G. L. Nemhauser, A lifted linear programming branchand- bound algorithm for mixed-integer conic quadratic programs, INFORMS J. Comput. 20 (2008), 438-450.
    MathSciNet     CrossRef

  38. H. Wolkowicz and R. Saigal and L. Vandenberghe (eds.), Handbook on Semidefinite Programming: Theory, Algorithms and Applications, Kluwer Academic Publishers, Boston, 2000.
    MathSciNet     CrossRef


Rad HAZU Home Page