Rad HAZU, Matematičke znanosti, Vol. 23 (2019), 141-157.
OPTIMIZATION OF DAMPING POSITIONS IN A MECHANICAL SYSTEM
Yoshihiro Kanno, Matea Puvača, Zoran Tomljanović and Ninoslav Truhar
Mathematics and Informatics Center, The University of Tokyo, Tokyo 113-8656, Japan
e-mail: kanno@mi.u-tokyo.ac.jp
Department of Mathematics, Josip Juraj Strossmayer University of Osijek, Trg Ljudevita Gaja 6, 31 000 Osijek, Croatia
e-mail: mpuvaca@mathos.hr
e-mail: ztomljan@mathos.hr
e-mail: ntruhar@mathos.hr
Abstract. This paper deals with damping optimization of the mechanical
system based on the minimization of the so-called "average displacement
amplitude". Further, we propose three different approaches to
solving this minimization problems, and present their performance on two
examples.
2010 Mathematics Subject Classification.
65K10, 49M99, 90C11.
Key words and phrases. Optimal damper placement, damped mechanical system, average
displacement amplitude.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/y26kec33q9
References:
- T. Achterberg, SCIP: solving constraint integer programs, Math. Program. Comput.
1 (2009), 1-41.
MathSciNet
CrossRef
- M. F. Anjos and J. B. Lasserre (eds.), Handbook on Semidefinite, Conic and Polynomial
Optimization, Springer, New York, 2012.
MathSciNet
CrossRef
- A. Atamtürk and V. Narayanan, Conic mixed-integer rounding cuts, Math. Program.
122 (2010), 1-20.
MathSciNet
CrossRef
- B. P. Belinskiy and J. P. Dauer and C. Martin and M. A. Shubov, On controllability
of an elastic string with a viscous damping, Numer. Funct. Anal. Optim. 19 (1998),
227-255.
MathSciNet
CrossRef
- P. Benner and Z. Tomljanović and N. Truhar, Damping optimization for linear vibrating
systems using dimension reduction, in: The 10th International Conference on
Vibration Problems ICOVP, Prague, 2011, pp. 297-305.
- P. Benner and Z. Tomljanović and N. Truhar, Dimension reduction for damping optimization
in linear vibrating systems, ZAMM Z. Angew. Math. Mech. 91 (2011),
179-191.
MathSciNet
CrossRef
- P. Benner and Z. Tomljanović and N. Truhar, Optimal damping of selected eigenfrequencies
using dimension reduction, Numer. Linear Algebra Appl. 20 (2013), 1-17.
MathSciNet
CrossRef
- D. E. Beskos, The effect of damping on the vibrational stability relation of linear systems,
Mech. Res. Comm. 3 (1976), 373-377.
CrossRef
- D. E. Beskos and B. A. Boley, Critical damping in linear discrete dynamic systems,
ASME J. Appl. Mech. 47 (1980), 627-630.
CrossRef
- A. Billionnet and S. Elloumi and A. Lambert, Extending the QCR method to general
mixed-integer programs, Math. Program. 131 (2012), 381-401.
MathSciNet
CrossRef
- J. T. Cremer Jr., Advances in Imaging and Electron Physics, Volume 173, Elsevier,
2010.
- F. E. Curtis and T. Mitchell and M. L. Overton, A BFGS-SQP method for nonsmooth,
nonconvex, constrained optimization and its evaluation using relative minimization
profiles, Optim. Methods Softw. 32 (2017), 148-181.
MathSciNet
CrossRef
- S. Drewes and S. Pokutt, Cutting-planes for weakly-coupled 0/1 second order cone
programs, Electron. Notes Discrete Math. 36 (2010), 735-742.
CrossRef
- M. I. Friswell and A. W. Lees, Resonance frequencies of viscously damped structures,
J. Sound and Vibration 217 (1998), 950-959.
CrossRef
- Gurobi Optimization Inc., Gurobi Optimizer Reference Manual,
http://www.gurobi.com/
- N. Hori and Y. Inoue and N. Inoue, A study on energy dissipating behaviors and
response prediction of rc structures with viscous dampers subjected to earthquakes, in:
13th World Conference on Earthquake Engineering, Vancouver, 2004.
- IBM ILOG, User’s Manual for CPLEX, http://www.ilog.com/
- D. J. Inman and A. N. Andry, Jr., Some results on the nature of eigenvalues of
discrete damped linear systems, ASME J. Appl. Mech. 47 (1980), 927-930.
CrossRef
- Y. Kanno, Damper placement optimization in a shear building model with discrete design
variables: a mixed-integer second-order cone programming approach, Earthquake
Engineering and Structural Dynamics 42 (2013), 1657-1676.
CrossRef
- Y. Kanno, Global optimization of trusses with constraints on number of different crosssections:
a mixed-integer second-order cone programming approach, Comput. Optim.
Appl. 63 (2016), 203-236.
MathSciNet
CrossRef
- Y. Kanno, Mixed-integer second-order cone programming for global optimization of
compliance of frame structure with discrete design variables, Struct. Multidiscip. Optim.
54 (2016), 301-316.
MathSciNet
CrossRef
- I. Kuzmanović and Z. Tomljanović and N. Truhar, Optimization of material with modal
damping, Appl. Math. Comput. 218 (2012), 7326-7338.
MathSciNet
CrossRef
- I. Kuzmanović and Z. Tomljanović and N. Truhar, Damping optimization over the
arbitrary time of the excited mechanical system, J. Comput. Appl. Math. 304 (2016),
120-129.
MathSciNet
CrossRef
- J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J.
7 (1965), 308-313.
MathSciNet
CrossRef
- B. Nour-Omid and M. E. Regelbrugge, Lanczos method for dynamic analysis of
damped structural systems, Earthquake Engineering and Structural Dynamics 18
(1989), 1091-1104.
CrossRef
- U. Prells and M. I. Friswell, A measure of non-proportional damping, Mech. Systems
Signal Processing 14(2) (2000), 125-137.
CrossRef
- S. E. Schaffer, The Effect of a Gap Nonlinearity on Recursive Parameter Identification
Algorithms, Massachusetts Institute of Technology, 1988.
- W. Seto, Schaum’s Outline of Theory and Problems of Mechanical Vibrations.
McGraw-Hill, 1964.
- I. Takewaki, Optimal damper placement for minimum transfer functions, Earthquake
Engineering and Structural Dynamics 26 (1997), 1113-1124.
CrossRef
- I. Takewaki, Optimal damper placement for planar building frames using transfer functions,
Structural and Multidisciplinary Optimization 20 (2000), 280-287.
CrossRef
- I. Takewaki and S. Yoshitomi, Effects of support stiffnesses on optimal damper placement
for a planar building frame, The Structural Design of Tall Buildings 7 (1998),
323-336.
CrossRef
- Z. Tomljanović, Optimal damping for vibrating systems using dimension reduction.
PhD thesis, Faculty of Science, University of Zagreb, Zagreb, 2011.
- N. Truhar and Z. Tomljanović, Estimation of optimal damping for mechanical vibrating
systems, Int. J. Appl. Math. Mech. 5 (2009), 14-26.
- N. Truhar and Z. Tomljanović and K. Veselić, Damping optimization in mechanical
systems with external force, Appl. Math. Comput. 250 (2015), 270-279.
MathSciNet
CrossRef
- N. Truhar and K. Veselić, An efficient method for estimating the optimal dampers’
viscosity for linear vibrating systems using Lyapunov equation, SIAM J. Matrix Anal.
Appl. 31 (2009), 18-39.
MathSciNet
CrossRef
- K. Veselić, Damped Oscillations of Linear Systems, Lecture Notes in Mathematics
2023, Springer-Verlag, Berlin, 2011.
MathSciNet
CrossRef
- J. P. Vielma and S. Ahmed and G. L. Nemhauser, A lifted linear programming branchand-
bound algorithm for mixed-integer conic quadratic programs, INFORMS J. Comput.
20 (2008), 438-450.
MathSciNet
CrossRef
- H. Wolkowicz and R. Saigal and L. Vandenberghe (eds.), Handbook on Semidefinite
Programming: Theory, Algorithms and Applications, Kluwer Academic Publishers,
Boston, 2000.
MathSciNet
CrossRef
Rad HAZU Home Page