Rad HAZU, Matematičke znanosti, Vol. 23 (2019), 123-140.
A FAST AND EFFICIENT METHOD FOR SOLVING THE MULTIPLE LINE DETECTION PROBLEM
Rudolf Scitovski, Una Radojičić and Kristian Sabo
Department of Mathematics, University of Osijek, 31 000 Osijek, Croatia
e-mail: scitowsk@mathos.hr
e-mail: uradojic@mathos.hr
e-mail: ksabo@mathos.hr
Abstract. In this paper, we consider the multiple line detection
problem on the basis of a data points set coming from a number of lines
not known in advance. A new and efficient method is proposed, which
is based upon center-based clustering, and it solves this problem quickly
and precisely. The method has been tested on 100 randomly generated
data sets. In comparison to the incremental algorithm, the method gives
significantly better results. Also, in order to identify a partition with the
most appropriate number of clusters, a new index has been proposed for
the case of a cluster whose lines are cluster-centers. The index can also be
generalized for other geometrical objects.
2010 Mathematics Subject Classification.
65K05, 90C26, 90C27, 90C56, 90C57, 05E05.
Key words and phrases. Location, multiple line detection problem, center-based clustering,
number of clusters, globally optimal partition.
Full text (PDF) (free access)
DOI: https://doi.org/10.21857/yvjrdcqq8y
References:
- A. M. Bagirov, J. Ugon and H. Mirzayeva, Nonsmooth nonconvex optimization approach
to clusterwise linear regression problems, European J. Oper. Res. 229 (2013),
132-142.
MathSciNet
CrossRef
- A. M. Bagirov, J. Ugon and D. Webb, Fast modified global k-means algorithm for incremental
cluster construction, Pattern Recognition 44 (2011), 866-876.
CrossRef
- M. Barni and R. Gualtieri, A new possibilistic clustering algorithm for line detection
in real world imagery, Pattern Recognition 32 (1999), 1897-1909.
CrossRef
- R. Duda, P. Hart and D. Stork, Pattern Classification, Wiley, 2001.
MathSciNet
- L. A. Fernandes and M. M. Oliveira, Real-time line detection through an improved
Hough transform voting scheme, Pattern Recognition 41 (2008), 299-314.
CrossRef
- C. Fernández, V. Moreno, B. Curto and J. A. Vicente, Clustering and line detection
in laser range measurements, Robotics and Autonomous Systems 58 (2010), 720-726.
CrossRef
- R. Grbić, E. K. Nyarko and R. Scitovski, A modification of the DIRECT method for
Lipschitz global optimization for a symmetric function, J. Global Optim. 57 (2013),
1193-1212.
MathSciNet
CrossRef
- D. R. Jones, C. D. Perttunen and B. E. Stuckman, Lipschitzian optimization without
the Lipschitz constant, J. Optim. Theory Appl. 79 (1993), 157-181.
MathSciNet
CrossRef
- J. Kogan, Introduction to Clustering Large and High-dimensional Data, Cambridge
University Press, New York, 2007.
MathSciNet
- V. Leemans and M.-F. Destain, Line cluster detection using a variant of the Hough
transform for culture row localisation, Image and Vision Computing 24 (2006), 541-550.
CrossRef
- A. Manzanera, T. P. Nguyen and X. Xu, Line and circle detection using dense one-toone
Hough transforms on greyscale images, EURASIP Journal on Image and Video
Processing 2016, Article number: 46 (2016).
CrossRef
- T. Marošević, The Hausdorff distance between some sets of points, Math. Commun.
23 (2018), 247-257.
MathSciNet
- P. Mukhopadhyay and B. B. Chaudhuri, A survey of Hough transform, Pattern
Recognition 48 (2015), 993-1010.
CrossRef
- Y. Nievergelt, Total least squares: state-of-the-art regression in numerical analysis,
SIAM Rev. 36 (1994), 258-264.
MathSciNet
CrossRef
- K. Sabo and R. Scitovski, An approach to cluster separability in a partition, Inform.
Sci. 305 (2015), 208-218.
MathSciNet
CrossRef
- K. Sabo, R. Scitovski and I. Vazler, One-dimensional center-based l1-clustering
method, Optim. Lett. 7 (2013), 5-22.
MathSciNet
CrossRef
- R. Scitovski, A new global optimization method for a symmetric Lipschitz continuous
function and application to searching for a globally optimal partition of a onedimensional
set, J. Global Optim. 68 (2017), 713-727.
MathSciNet
CrossRef
- R. Scitovski and S. Scitovski, A fast partitioning algorithm and its application to
earthquake investigation, Computers & Geosciences 59 (2013), 124-131.
CrossRef
- H. Späth, Algorithm 48: a fast algorithm for clusterwise linear regression, Computing
29 (1982), 175-181.
CrossRef
- H. Späth, Cluster-Formation und Analyse, R. Oldenbourg Verlag, München, 1983.
- J. C. R. Thomas, A new clustering algorithm based on k-means using a line segment
as prototype, in: CIARP, 2011, Lecture Notes in Comput. Sci. 7042, pp. 638-645.
CrossRef
- H.-H. Trinh, D.-N. Kim and K.-H. Jo, Facet-based multiple building analysis for robot
intelligence, Appl. Math. Comput. 205 (2008), 537-549.
CrossRef
- L. Vendramin, R. J. G. B. Campello and E. R. Hruschka, On the comparison of relative
clustering validity criteria, in: Proceedings of the SIAM International Conference
on Data Mining, SDM 2009, April 30 – May 2, 2009, Sparks, Nevada, USA, SIAM,
2009, pp. 733-744.
- I. Vidović, D. Bajer and R. Scitovski, A new fusion algorithm for fuzzy clustering,
Croat. Oper. Res. Rev. CRORR 5 (2014), 149-159.
MathSciNet
CrossRef
- I. Vidović and R. Scitovski, Center-based clustering for line detection and application
to crop rows detection, Computers and Electronics in Agriculture 109 (2014), 212-220.
CrossRef
Rad HAZU Home Page